Problem Statement:

Provide a general purpose facility to arbitrarily route windows messages within a C++ class hierarchy based on the type of the message.

The organic ATL facility is a collection of preprocessor macros that route messages based upon class associations, but lacks a routing mechanism sufficient to differentiate on a message-type basis.

Solution Components:

The Macros

A set of macros based upon the existing ATL message map macros is created. These macros allow the addition of an initial conditional check of message type. This message type is specified within the macro declaration thereby allowing arbitrary use. These macros are defined in the file AttilaMsgRouting.h.
CFilteredMsgPath

This class is defined within the file AttilaMsgRouting.h and provides a convenient way to route messages based on type to a member variable of a class. CFilteredMsgPath is a template class and is parameterized on the CMessageMap derived class to defer messages to, the message type to defer, and the ALT_MESSAGE_MAP identifier to specify when routing to the specified class.

An example of it’s usage can be seen in the file MainFrame.h within the class CEDChildFrame.

Message Flow:

The following section describes in detail how messages are routed within the example project CmdRouteWnd.

WM_COMMAND messages are initially sent to the frame window class CMainFrame that is defined within the file MainFrame.h. This class derives from the class CMDIFrameWindowImpl defined within the file AttilaFrame.h. The first entry in CMainFrame’s message map is:

CHAIN_MSG_MAP_ALT_FILTER(baseClass, WM_COMMAND, WM_COMMAND)

END_MSG_FILTER(WM_COMMAND)

This macro augments the original ATL version and routes all WM_COMMAND messages (the second parameter) to the baseClass (the first parameter). These messages enter the baseClass message map at the alternative message map entry identified by the third parameter. Using the message value itself to identify the ALT_MSG_MAP() entry in the base class makes it a little more obvious what is happening in the routing. The END_MSG_FILTER macro needs to be specified only in the case where the same object that get’s first try at the specified message type will also be called afterwards for other message types. This prevents the specified object from seeing not-handled messages twice.
The base class in this case is CMDIFrameWindowImpl and is defined in the file AttilaFrame.h. CMDIFrameWindowImpl has an entry in it’s message map that reads as follows:

BEGIN_MSG_MAP(thisClass)

 MESSAGE_HANDLER(WM_CREATE, OnCreate)

 MESSAGE_HANDLER(WM_QUERYENDSESSION, OnQueryClose)

 MESSAGE_HANDLER(WM_CLOSE, OnQueryClose)

 MESSAGE_HANDLER(WM_MDISETMENU, OnMdiSetMenu)

 CHAIN_MSG_MAP(baseClass)

ALT_MSG_MAP(WM_COMMAND)

…

// route messages to the currently active view

…

 CHAIN_MSG_MAP(baseClass)

END_MSG_MAP()

This entry allows all WM_COMMAND messages received from the derived class to enter the message map specifically at the point where they will be handled by being routed to the currently active MDI child window.

Once a command message arrives at the currently active MDI child, it is passed to the view for first try at handling. This is done through a combination of the ATL provided macro CHAIN_MSG_MAP_MEMBER and the template class CFilteredMsgPath which consolidates the behavior of a message map that only allows WM_COMMAND to enter it’s conditional code. The child frame class contains an instance of a view, but this instance is “wrapped” by the CFilteredMsgPath class to enable the correct routing behavior.

I made several attempts to create a similar template class of hierarchical navigation and routing of command messages, but the fact that ProcessWindowMessage is a virtual function sabotaged those attempts. It works just fine for member variables though.

