
 1

Web Service Faceplates

Stuart Celarier, Fern Creek Corporation
stuart@ferncrk.com

Draft 0.41
30 September 2002

This is an early draft of a work in progress, distributed for review purposes. A future
version will be submitted for publication. I invite your feedback, comments and
criticisms. Do not distribute without express permission.

The code download for this paper is at http://www.ferncrk.com/faceplates.

Introducing Web Service Faceplates
A web service faceplate is a client for a web service that provides a lightweight user
interface for the web service.

� HTML is the universal user interface language. DHTML is an imperfect vehicle
for manipulating the HTML DOM; current lack of portability.

� Faceplates are modular: can be aggregated in a portal-style HTML page
� Generally focused on a small number of web service calls
� XSLT goodness

o Transformational grammars are cool, XSLT is an elegant tool
o Craig Andera’s talk at the 2002 Web Services DevCon West on

implementing a web service using XSLT filled in the server side of the
story

o Web Service Faceplates provide a compelling story for using XSLT on the
client side

� Maximal declarative programming with XSLT.
� MVC architecture supports sophisticated user interface while minimizing calls to

the web service by maintaining state

A brief history of faceplates. The faceplate concept originated with embedded controllers,
as physical device providing access to tiny user interface for monitoring or changing the
controller. As embedded controllers became accessible across a network, physical
faceplates were replaced by virtual faceplates on a computer screen. Web Service
Faceplates provide the same style of lightweight user interfaces for a web service.

The concept of web service faceplates are introduced in [Mohr]. My specific
contributions are in the following areas:

� Improved initialization and startup.
� Improved data model.
� Better code organization for clarity of exposition and to assist the developer.

 2

� Removed dependency on MSXML 2.0, although it still requires both MSXML 3.0
and 4.0, I am still working to reduce that to MSXML 4.0 alone.

� Completely new example implemented from the ground up to better illustrate the
web service faceplate concept in a single application.

Reference client
Among the attributes of web service faceplates, several of them commend faceplates to
being used as a reference client

� Easy to write: a faceplate application is an XML file that contains XSLT (for
declarative programming) and JavaScript (for procedural programming), plus a
tiny auxiliary XSLT file used to bootstrap the application into existence as
DHTML

� Transparent: as XML, a developer of a web service client can use a faceplate
application as guidance on creating

� Easy to validate: see “Further directions” for an obvious next step, which is
validating the faceplate application XML against an XSD schema. This gives rise
to the powerful concept of schema-based programming.

� Appropriate for testing implementation and availability of the web service
� Make no use of WSDL. One or more faceplate applications could be used as the

reference implementation to specify and test the Web Service
� Theoretically portable because of its dependence on open standards like XML,

XSLT and HTML. As the integration of XML into HTML improves, there is
good reason to believe that current barriers will disappear. Current barriers to
cross-platform portability are:

o Inconsistent DHTML implementations: see “Futher directions” for using
SVG for a consistent user interface substrate

o No W3C specification on invoking an XSLT processor from HTML.

Faceplate Design Objectives
Web service faceplates should be modular and lightweight, so they are suitable for use in
portal application. Modularity is expressed as an HTML page that can be embedded
inline in HTML using an <iframe> element. Lightweight here means sufficiently
conservative with resources so as to coexist with other lightweight modules in a parent
HTML page. This includes minimizing round trips to the web service.

Maximal use of XSLT, declarative programming is generally easier to support. Errors
and exceptional conditions lead to empty or incorrect results, not crashes.

Support the MVC pattern in the architecture so that faceplates can have sophisticated user
interfaces. To support the MVC pattern, we need an event mechanism so that views can
be redrawn when the corresponding data in the model is changed.

A layered architecture in the procedural code eases development process.

 3

A Sample Weather Web Service
It is difficult to talk for long about developing clients of web services without having a
web service to talk about. I’ve implemented a sample web service as an ASP.NET
application in C# which provides weather information for select locations around the
globe. Code for this web service and the web service faceplate are available from the
code download site listed at the top of this paper.

The Weather web service exposes three methods:

� GetCountries() returns a list of countries, where each country is composed of
a name and abbreviation pair;

� GetStations(countryAbbr) returns a list of weather stations for the
specified country, where each station is also composed of a name and
abbreviation pair; and

� GetWeatherReport(stationAbbr) returns a name, temperature and
forecast for the specified weather station.

Web Service Faceplate for the Weather Web Service
The aim of creating a faceplate for the Weather web service is to provide enough user
interface for the faceplate to be useful and valuable without having to devote a lot of
resources to development or maintenance.

Figure 1 illustrates the intended use of a web service faceplate as a modular,
encapsulated application, suitable for aggregated use in a portal-style application. The
web service faceplate is an XML file which contains procedural code (JavaScript),
declarative code (XSLT), and data. Using the web service faceplate is accomplished by
naming the XML file as the source of an <iframe> element in HTML. Optionally, the
<iframe> element can be styled to make its appearance consistent with the hosting
HTML page. Figure 2 shows the web service faceplate in action.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<html>
 <head>
 <title>Test Container for Weather Web Service Faceplate</title>
 <style type="text/css">
 body { background-color: gray }
 iframe.mvc iframe.mvc iframe.mvc iframe.mvc { TOP: 50px; LEFT: 50px;
 HEIGHT: 350px; WIDTH: 500px;
 POSITION: absolute }
 </style>
 </head>
 <body>
 <h1>MVC Faceplate</h1>
 <iframe class="mvc" src="http://localhost/MvcFaceplate/MvcFace <iframe class="mvc" src="http://localhost/MvcFaceplate/MvcFace <iframe class="mvc" src="http://localhost/MvcFaceplate/MvcFace <iframe class="mvc" src="http://localhost/MvcFaceplate/MvcFaceplate.xml"plate.xml"plate.xml"plate.xml"
 scrolling="no" frameborder="0"></iframe> scrolling="no" frameborder="0"></iframe> scrolling="no" frameborder="0"></iframe> scrolling="no" frameborder="0"></iframe>
 </body>
</html>

Figure 1: Sample use of web service faceplate

 4

Figure 2: The web service faceplate in action

Faceplate Anatomy
Figure 3 shows the overall structure of the web service faceplate application, which is
an XML file. First, notice the use of an <?xml-stylesheet?> processing instruction
which will invoke an XSLT transformation to turn this faceplate application XML file
into HTML That initialization transformation will be examined shortly.

The <Faceplate> document element is composed of several different child elements.
The <Model> element contains initial data for the data model in the MVC architecture.
For this simple application the initial data model is empty, but it can be used to hold data
to display while the first web service calls are being made or in case the web service is
not available.

The <Views> element contains multiple nested <View> elements, providing a flexible
set of views in the MVC architecture. The <View> elements will be transformed into
HTML <DIV> elements with unique IDs by the initialization transformation.

 5

Accompanying the multiple views, the <Style> element contains CSS properties for
styling the views.

The <CodeBlock> element contains all the procedural code, i.e., JavaScript, for the
faceplate application. The procedural code has been partitioned into three layers:
application specific, application general, and system services. These layers organize the
code and help gauge how much of the code is custom for this specific application, how
much is custom for this general style of application, how much is supporting common
system services. The <Layer> elements are solely for the benefit of the faceplate
application developer, the initialization transformation will place all their text contents
into a single HTML <SCRIPT> element.

The <Events> element contains multiple <Event> elements which are used by an event
dispatch mechanism in the procedural code. Events constitute some declarative high-level
glue used to connect the procedural and declarative code together in the faceplate
application.

Lastly, the <Intentions> element contains all the declarative code, i.e., XSLT
documents, for the faceplate application. The term ‘intention’ is fitting, since we are
using a declarative language to declare our intentions. The declarative code has been
partitioned into four regions by the type of transformation. The Startup intention type
contains XSLT transforms used at application startup time, after the initialization
transform has converted this document to HTML. The SoapRequest intention type
contains transforms that produce SOAP request messages for the different web service
methods used by the faceplate application. The UpdateModel intention type contains
transforms that modify the data model. There are two sources for updating the data
model: user interactions and data returned in SOAP response messages. The View
intention type contains transforms that render individual views based on the data model.

Taken together, the <CodeBlock>, <Events> and <Intentions> elements form the
controller in the MVC architecture.

<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="MvcFaceplateInit.xslt"?>

<Faceplate>
 <Model/>

 <Views>
 ...
 </Views>

 <Style>
 ...
 </Style>

 <CodeBlock>
 <Layer id="AppSpecific" >...</Layer>
 <Layer id="AppGeneral" >...</Layer>
 <Layer id="System" >...</Layer>
 </CodeBlock>

 <Events>
 ...

 6

 </Events>

 <Intentions>
 <IntentionType id="Startup" >...</IntentionType>
 <IntentionType id="SoapRequest" >...</IntentionType>
 <IntentionType id="UpdateModel" >...</IntentionType>
 <IntentionType id="View" >...</IntentionType>
 </Intentions>
</Faceplate>

Figure 3: High-level structure of the web service faceplate

Faceplate Initialization
Let’s turn our attention to the initialization transformation shown in Figure 4. The aim
here is to do the bare minimum in this transformation, preferring to include startup
processing in the faceplate application XML document instead. The DHTML DOM
provides read-only access to <script> and <style> elements, so they must be
initialized before the DOM is created. In both cases, they use the default XSLT templates
to concatenate all the text node descendants of the <CodeBlock> and <Style>
elements, respectively, in the faceplate application XML document.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <script>
 <xsl:apply-templates select="/Faceplate/CodeBlock"/>
 </script>
 <style>
 <xsl:apply-templates select="/Faceplate/Style"/>
 </style>
 </head>
 <body id="body">
 </body>
 </html>
 </xsl:template>

</xsl:transform>

Figure 4: Initialization XSLT

Continuing on to the rest of the startup of the faceplate application, in Figure 5 we see
the Initialize function being bound to the onload method of window, so that
function will be executed at startup. Two global variables are also initialized: doc refers
to the underlying faceplate application XML document, and model is an XML DOM
object initialized with the <Model> element in the faceplate application XML.

The Initialize function performs an XSLT transformation (via the
TransformObject function) using the faceplate application XML document as the
source and the XSLT from the intention with ID of Bootstrap.

 <CodeBlock>
 <Layer id="AppSpecific">
 window.onload = Initialize;

 var doc = document.XMLDocument;

 7

 var model = CreateDOMDocument(
 doc.selectSingleNode("/Faceplate/Model").xml);

 function Initialize()
 {
 body.innerHTML = TransformObject(doc,
 GetIntentionTransform("Bootstrap"));

 // bind Update method to views
 CountriesView.Update = UpdateView;
 StationsView.Update = UpdateView;
 StatusView.Update = UpdateView;
 WeatherReportView.Update = UpdateView;

 Notify("EventGetCountries");
 }
 ...
 </Layer>
 ...
 </CodeBlock>

Figure 5: Initialize function

Let’s drill down into the Bootstrap intention in Figure 6. Each <Intention>
element contains an XSLT document, with the XSLT namespace declared on the parent
<Intentions> element. Following the convention used in [Mohr], we prefer the
<xsl:transform> as a more appropriate XSLT document element name than its
synonym <xsl:stylesheet>.

The source document for the Bootstrap intention is the faceplate application XML, and
we see that this XSLT is transforming multiple nested <View> elements into HTML
<div> elements with id and class attributes so that they can be addressed and styled,
respectively. The value of the id and class attributes is the concatenation of the original
<View>’s id value and the string “View”. The third template in this transform is simply
the identity transform in XSLT, copying all nodes and attributes into the result.

 <Intentions xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <IntentionType id="Startup">

 <Intention id="Bootstrap">
 <xsl:transform version="1.0">
 <xsl:output method="html"/>

 <xsl:template match="/">
 <xsl:apply-templates select="/Faceplate/Views/View"/>
 </xsl:template>

 <xsl:template match="View">
 <div id="{concat(@id, 'View')}" class="{concat(@id, 'View')}">
 <xsl:apply-templates select="node()"/>
 </div>
 </xsl:template>

 <xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="node()|@*"/>
 </xsl:copy>
 </xsl:template>

 </xsl:transform>
 </Intention>

 8

 </IntentionType>
 ...
 </Intentions>

Figure 6: The Bootstrap intention

Returning to the Initialize function of Figure 5, the result of this transformation is
set as the innerHTML in the <body> element. This is precisely what we want: the
faceplate application is rendered as a set of nested views expressed as HTML <div>
elements that can be addressed and styled independently.

Next in the Initialize function we find some DHTML code, defining an Update
method on various views and binding the UpdateView function to that method. The
UpdateView function, Figure 7, is in the application general layer of the
<CodeBlock>, and replaces the object’s contents with the result of an XSLT
transformation that uses the data model as its source.

function UpdateView(intentionTransform)
{
 try
 {
 this.innerHTML = TransformObject(model, intentionTransform);
 }
 catch(e)
 {
 alert("Error during transform:\n\n"+e.description);
 }
}

Figure 7: UpdateView function

Lastly, in the Initialize function the faceplate application is started with the call to
the Notify function with an event that will result in the first web service call being made
and the user interface being updated accordingly. Figure 8 shows the application
specific Notify function, and Figure 9 shows the <Events> element from the
faceplate application XML.

The Notify function gets an event ID as input, finds the <Event> element with that ID,
and parses the space-delimited string of notifications that need processing. For each
notification it determines if it is associated with a specific procedural call (the case
statements), in which case the corresponding call is invoked. Otherwise the notification is
taken to be the ID of a declarative intention. Such intentions have a boundTo attribute,
specifying the view that that intention updates.

function Notify(event)
{
 var notify = GetEvent(event).getAttribute("notify").split(" ");
 for (each in notify)
 {
 switch(notify[each])
 {
 case "GetCountries" : GetCountries(); break;
 case "GetStations" : GetStations(); break;
 case "GetWeatherReport" : GetWeatherReport(); break;

 default:
 var intention = GetIntention(notify[each]);

 9

 document.all(intention.getAttribute("boundTo")).Update(
 GetTransform(intention));
 }
 }
}

Figure 8: Notify function

<Events>
 <Event id="EventGetCountries" notify="StatusBusy GetCountries
 ViewCountriesByAbbr StatusReady"/>
 <Event id="EventGetStations" notify="StatusBusy GetStations
 ViewStationsByAbbr StatusReady"/>
 <Event id="EventGetWeatherReport" notify="StatusBusy GetWeatherReport
 ViewWeatherReport StatusReady"/>
 <Event id="EventViewCountriesByAbbr" notify="ViewCountriesByAbbr"/>
 <Event id="EventViewCountriesByName" notify="ViewCountriesByName"/>
 <Event id="EventViewStationsByAbbr" notify="ViewStationsByAbbr"/>
 <Event id="EventViewStationsByName" notify="ViewStationsByName"/>
</Events>

Figure 9: Event declarations

The call to Notify that appears in the Initialize function passed the
EventGetCountries ID. Locating the corresponding <Event> element in Figure 9,
we see the notifications are StatusBusy, GetCountries, ViewCountriesByAbbr
and StatusReady. This specifies a sequence of processing: update the Status view to
read “Busy”; perform a SOAP call to get the list of countries and update the model
accordingly; have the Countries view update itself from the model; and update the Status
view to read “Ready”. Upon completing the initialization, the faceplate looks like that
shown in Figure 10.

 10

Figure 10: The initialized faceplate

Making SOAP Calls
From the Notify function we saw that there are a few notifications that correspond to
procedural code to make SOAP calls. Figure 11 shows the GetCountries function
as an example, along with the helper function WeatherWSSender. The helper function
takes the name of an action and returns an XMLHTTP object with all the headers set to
post a SOAP request to the Weather web service.

function GetCountries()
{
 var sender = WeatherWSSender("GetCountries");
 sender.send(TransformObject(doc,
 GetIntentionTransform("SoapRequestGetCountries")));

 if (sender.status == 500) // SOAP fault
 alert(sender.responseText);
 else
 {
 if (sender.status == 200)
 model.loadXML(TransformObjectParams(sender.responseXML,
 GetIntentionTransform("UpdateModelGetCountries"),
 CreateParam("model", model)));
 }
}

...

function WeatherWSSender(action)
{
 var sender = new ActiveXObject("Msxml2.XMLHTTP.4.0");
 sender.open("POST","/WeatherWS/Weather.asmx",false);
 sender.setRequestHeader("Content-Type","text/xml");
 sender.setRequestHeader("charset","UTF-8");
 sender.setRequestHeader("Host","localhost");
 sender.setRequestHeader("SOAPAction",
 "urn:ferncrk.com:webservices:Weather/" + action);
 return sender;
}

Figure 11: Making a SOAP call

GetCountries then uses the XMLHTTP object to send (post) the SOAP request
generated by the intention SoapRequestGetCountries which is shown in Figure
12. This is a very simple SOAP request message to produce, since the corresponding
web service method takes no parameters. The other two SOAP request intentions (not
shown here) do illustrate passing parameters into the web service method call.

<Intention id="SoapRequestGetCountries">
 <xsl:transform version="1.0">

 <xsl:template match="/">
 <soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetCountries xmlns="urn:ferncrk.com:webservices:Weather"/>
 </soap:Body>
 </soap:Envelope>
 </xsl:template>

 11

 </xsl:transform>
</Intention>

Figure 12: Creating a SOAP request message

The XMLHTTP performs the post synchronously, and on return checks for failure. If the
SOAP call succeeded, a second XSLT transform is used to extract data from the response
and update the model with that data. Actually, that is what we’d like to do, but in reality
we presently have to create an entirely new copy of the data model, serialize it as XML,
then reparse it in to the model using loadXML. Although inelegant and inefficient, so far
it appears the only reasonable1 way of updating the model with the current state of
integration of XML in Internet Explorer.

As a consequence, the intentions used to update the model are based on the identity
transform to copy everything we are not concerned with, and a few other templates to add
or remove the relevant elements to the model. Figure 13 shows the
UpdateModelGetCountries intention. The transformation is applied to the SOAP
response message (sender.responseXML), and the current model is passed in as a
parameter to the transformation. The template that matches the root creates a new
<Model> element, adds a <Countries> element inside of that and populates it with the
contents of the SOAP body. It also copies the rest of the current model, except for any
previous <Countries> element. The second template reaches down into the SOAP
body to get the interesting data, creating one <Country> element in the model for each
country returned in the country list.

<Intention id="UpdateModelGetCountries">
 <xsl:transform version="1.0"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:weather="urn:ferncrk.com:webservices:Weather"
 exclude-result-prefixes="soap weather">
 <xsl:output omit-xml-declaration="yes"/>
 <xsl:param name="model"/>

 <xsl:template match="/">
 <Model>
 <Countries>
 <xsl:apply-templates select="/soap:Envelope/soap:Body/*"/>
 </Countries>
 <xsl:apply-templates select="$model/Model/*" mode="copyModel"/>
 </Model>
 </xsl:template>

 <xsl:template match="weather:GetCountriesResponse/
 weather:GetCountriesResult/weather:countryList/weather:Country">
 <Country Name="{weather:name}" Abbr="{weather:abbr}"/>
 </xsl:template>

 <xsl:template match="node()|@*" mode="copyModel">
 <xsl:copy>
 <xsl:apply-templates select="node()|@*" mode="copyModel"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="Countries" mode="copyModel"/>

 </xsl:transform>

1 As opposed to the MSXML 2.0 hack used in [Mohr]

 12

</Intention>

Figure 13: Updating the model from a SOAP response message

That completes handling the SOAP request and response, so now it is time to see how the
views are updated and the value that caching data in a model provides to web service
faceplates.

Updating the View
Figure 14 shows the ViewCountriesByAbbr intention. You will recall from
looking at the Notify function that intentions which update view contain a boundTo
attribute specifying a binding to a view. Naturally enough, the ViewCountriesByAbbr
intention is bound to the CountriesView view. This intention generates a table with a
header row and one row for each <Country> in the model, with the countries sorted by
the Abbr attribute. The table data item, <td>, for the Name column adds an onclick
attribute that uses the Notify function to redraw the view sorted by name. Thus
redrawing views is accomplished using data in the model, and does not involve
unnecessary calls to the web service.

<Intention id="ViewCountriesByAbbr" boundTo="CountriesView">
 <xsl:transform version="1.0">
 <xsl:output method="html"/>

 <xsl:template match="/">
 <table border="0" cellpadding="3" cellspacing="0">
 <tr class="headerRow">
 <td class="sortColumn">Abbr</td>
 <td onclick="Notify('EventViewCountriesByName')">Name</td>
 </tr>
 <xsl:apply-templates select="/Model/Countries/Country">
 <xsl:sort select="@Abbr"/>
 </xsl:apply-templates>
 </table>
 </xsl:template>

 <xsl:template match="Country">
 <tr>
 <xsl:attribute name="onclick">
 SelectCountry("<xsl:value-of select="@Abbr"/>")
 </xsl:attribute>
 <td class="sortColumn">
 <xsl:value-of select="@Abbr"/>
 </td>
 <td>
 <xsl:value-of select="@Name"/>
 </td>
 </tr>
 </xsl:template>

 </xsl:transform>
</Intention>

Figure 14: ViewCountriesByAbbr intention

The table row for each country has an onclick attribute that uses the SelectCountry
function, Figure 15, to select a country. This simply creates an XML DOM object
containing the selected country, updates the model with the selected country, and fires off

 13

an event to get the station information for the selected country through another web
service method call..

function SelectCountry(country)
{
<![CDATA[
 var source = CreateDOMDocument("<SelectedCountry>" + country +
 "</SelectedCountry>");
]]>
 model.loadXML(TransformObjectParams(source,
 GetIntentionTransform("UpdateModelSelectedCountry"),
 CreateParam("model", model)));
 Notify("EventGetStations");
}

Figure 15: SelectCountry function

This completes the tour through the major functionality of the web service faceplate. All
the code that remains unexamined is boilerplate copies of the code we’ve looked at, and
some low level support.

Further directions
The basic concepts of web services faceplates were introduced in [Mohr]. They proceed
from this point to develop the following ideas.

� An XML schema document can be constructed in parallel with framework
application development

o Use to validate framework applications
o Development can focus on the framework application schema
o Schema-Based Programming

� JSML, JavaScript Markup Language, www.jsml.com
� Model-Based Programming
� Simulating applications with Petri nets

Another direction which I find merits particular attention is using Scalable Vector
Graphics (SVG) for the presentation of views in web services faceplates. SVG offers the
following benefits:

� SVG DOM has a uniform implementation cross platform, DHTML is lousy and
lossy for cross platform deployment

� Painter model much richer than DHTML
� Richer user interface elements: animation, alpha channel, better events,

compatible with SMIL

References
[Mohr] Stephen Mohr, Michael Corning, Erik Fuller, Michael John and Donald
Kackman, Web Service Faceplates: Building Web Service Clients using XML and XSLT.
Wrox Press, 2002.

[JSML] JavaScript Markup Language website: http://www.jsml.com

