
Apache Axis :
History, Architecture, and Why Open-source

SOAP Implementations Are So Cool

Glen Daniels
Macromedia / Apache

October 10, 2002



Outline

Axis History
Architecture and Usage : Some Gory Details
Extensibility with Axis
Spec Compliance
Why Open Source?
Futures
Q&A



Axis History

In the beginning, there was SOAP4J...
Submitted to Apache, became SOAP 2.0
Issues:

Extensibility / Modularity
Support for headers
Doc/lit support
Performance



History continued...
And then there was Axis...
F2F @ XML2000 – about 15 people
Real work began in Spring 2001
Things have changed a lot, but the 
basic idea/framework is the same
Integrated into JRun, WebSphere, etc.
Several companies building products on 
top of Axis



Architectural Guidelines

Extensibility / Flexibility
“Handlers” as core concept
Messages flow through a configurable 
pipeline of components

SOAP header processing
SAX based XML handling
Simplicity / ease-of-use
WSDL - Stubs, Skeletons



Message Processing (Server)

Service
Transport HandlersGlobal Handlers

Service 
class

Message
Context

Request
Response

RPC “Provider”

Handlers

HTTP
Logging

Security

Request Message

Response Message

Properties

Message Context



Mighty Morphin' Messages
A Message in Axis exists in a "form"

byte [] 
String
SOAPEnvelope

Messages are transformed when a 
particular form is requested
Intermediaries might pass messages 
through with no parsing



XML / Java Databinding
Readin' : SAX-based deserializers
Writin' : XML SerializationContext
Handles basic types, beans, collections, 
multirefs natively
Can register custom serializers / 
deserializers



Client APIs
Dynamic

Generated stubs

Handlers work on the client side too

Object [] arguments = new Object [] { "test Arg" };

String ret = (String)call.invoke("method", arguments);

FlightList flights =

airlineStub.checkFlights("BOS", "SFO", today);



Service Deployment in Axis
JWS - "Instant" Deployment

Write a Java source file, save as .jws, drop 
in your web hierarchy
Engine compiles + deploys on the fly

WSDD - Using Deployment Descriptors
Custom type mappings
Handlers
More configurability



Example of WSDD
<wsdd:deployment>

<service name="Test" style="RPC">

<parameter name="className" value="TestClass"/>

<parameter name="allowedMethods" value="*"/>

<parameter name="customManagement" value="yes"/>

<beanMapping qname="myNS:type"

type="org.wsdevcon.Type"/>

</service>

</wsdd:deployment>



Service Scopes
Axis supports three scopes

request - new service object on each SOAP 
request
singleton - service objects shared by all 
requests
session - service object per Session

"Session" is an abstract interface
We include HTTP + SOAP-header versions



Extensibility : Handlers

Handlers can communicate to each other via 
MessageContext properties
Handlers can be used to implement:

Security
Management
QoS
New transports
Routing
Debugging



Using Handlers : An Example
1. SecurityHandler pulls <sec:encrypt> header 

out of SOAP message
2. Writes "security.principal" property into 

MessageContext, based on encryption cert.
3. Decrypts SOAP envelope and updates the 

Message
4. Later, another handler can directly access 

the "security.principal" property in the 
MessageContext



Spec Compliance
SOAP 1.1
WSDL 1.1
XML Schema 1.0 (partial)
JAX-RPC 1.0
SAAJ 1.0
Some SOAP 1.2



Sidebar : WSDL 1.1 Issues
<soap:header>

Can't specify related or dynamic headers

Fault model
No place to spec faultcode/string

doc/lit/rpc/encoded - too many options
This stuff should be fixed in 1.2



Why Open Source?
SOAP is plumbing; commoditizing the 
engine is a good thing
Team is composed of more than one 
company's resources
Fixes (interop, etc) can happen fast
Smart people can jump in and 
participate



How Well Does It Work?
IRC helps a lot (high-bandwidth chat)
Some concerns are indeed addressed 
much quicker than in traditional dev…
…but some aren't
Team needs critical mass of committers 
with shared vision
An active user community is fabulous!



Future Directions

Track specs, esp. SOAP + WSDL 1.2
Factor out XML/Java databinding

Fully support XML Schema spec
Packaging for extensions/services as 
components (jars)
Start building "Module" library
Funnel experience into JAX-RPC 
"dotnext"



Summary

Axis…
is powerful, flexible and extensible
is open-source
has good buy-in from the Java community

Axis 1.0 is out, more to come
Want to get involved? 
http://xml.apache.org/axis



Q & A

Questions?


