Visual Basic for C++ Programmers

By Chris Sells

Although I have been programming with and teaching C++ since I learned it by reading the CFRONT release notes, I also have a love for Visual Basic. Modern versions of Visual Basic are remarkably similar to C++, in syntax and capabilities. So, for those hardcore types that hate VB without taking the time to look at it, here is a tour of Visual Basic from a C++ programmer's point of view.

Hello, Visual Basic

Now would be a good time to start up the Visual Basic IDE (VB4 or better only). If this is your first time, you will want to turn on a couple of options. First, set the "Require Variable Declaration" option in the Options dialog. This will insert the Option Explicit line of code into the beginning of each of your source modules, which will require you to declare variables before using them. Second, set the "Full Module View" option. This will show you all of the code in a module at once instead of only one function at a time. These two options will help ease the transition from C++ to Visual Basic.

To speed along this transition, let's write a VB program. Insert a Module into your new VB Project and enter the following code:

	Sub main()

MsgBox "Hello, Visual Basic", vbOK, _

"<insert message box title here>"

End Sub

As you can see, the entry point for a VB program is just like that of a C++ program: main(). One difference you've probably noticed is the lack of semicolons. Instead, the end of the line marks the end of a VB statement. If you have a long statement (like the MsgBox statement in the example above), use the _ to split it between two lines.

Before you can run this program, you will need to either remove the Form1 from the project or change the Startup Form from "Form1" to "Sub Main" in the Options dialog. To run the program, press the VCR style "Play" button on the toolbar or press F5. At this point, your program is being run by the VB interpreter. If you'd like to make it into a standalone application, choose the Make EXE File option from the File menu. Now you can double-click on it from the shell and it will run just like a real Win32 application (because it is).

Data types

To write real programs, you must use variables. You just turned on "type checking," so you will need to know what types you can use. Visual Basic has the integral types you would expect: byte, integer (2-byte signed), long (4-byte signed), single (4-byte real) and double (8-byte real). In addition, it also has Boolean, currency and date types. Instead of characters, Visual Basic has a string data type. It grows and shrinks as necessary and comes with a full range of operations for comparison, searching and sub-string manipulations.

To explicitly declare a variable of a specific type, use the "dim" statement (which stands for dimension). Uninitialized variables start with an initial value of "zero," e.g. integers start as zero, strings start as "", etc. Figure 1 is an example of using types in Visual Basic.

User-defined types For those occasions when you cannot use one of the built-in data types, Visual Basic allows the definition of a User-Defined Type (UDT) using the type statement. The elements of a UDT can be any VB type including another UDT. The following is an example of defining and then using a UDT in VB:

	Type MyNumber

 n As Integer

 s As String

End Type

Sub main()

 Dim num As MyNumber

 num.n = 1340

 num.s = "Thirteen hundred forty"

End Sub

A UDT is the equivalent of the C++ structure with one difference: a UDT cannot have a circular reference to an element of its own type. This would require a pointer, which is one type that VB does not have (although it does have references, which we'll see later). The lack of pointers is good news because the presence of a pointer can lead to memory management, which leads to more code, which leads to bugs, which leads to maintenance, which leads to evenings and weekends away from your family and friends. Because it does not support pointers, VB is able to handle memory management for you. The problem is that without pointers, it is very hard to have a dynamic collection. One way to solve this problem in VB is with an array.

Arrays Conceptually, a VB array is just like a C++ array. It is an ordered, multi-dimensional, homogeneous collection accessed via a zero-based index. Just like C++, a VB array can either be static, in which case it cannot change size once it has been created, or dynamic, in which case it can be resized at any time. In VB, however, even static arrays can be created with dimensions of variable size. In C++, you're forced to use new[] and delete[] to make arrays of a size that isn't known at compile time. If an array must change in size, C++ requires manual copying to preserve the contents. All of this is memory management, and you'd probably rather have your evenings and weekends free. In VB, making an array dynamic is a matter of declaring an array without dimensions and then using the ReDim statement to set the initial dimensionality. If the array needs to grow, the ReDim statement can be used again with the Preserve modifier, automatically copying the existing elements.

Figure 2 is an example of declaring and using static and dynamic arrays. Notice that arrays can be declared with an optional lower bound (the default is zero). The lower and upper bound of an array can be determined at runtime using the LBound() and UBound() functions. A syntax change you should notice is that array elements are declared and accessed using parentheses instead of brackets.

Constants Under C++, arrays must be declared using a constant size. To avoid magic numbers, we use either #define statements, const variables or enumerations. All of these are also available under VB (although enumerations are available only under Visual Basic 5.0 or better). The VB Const statement and Enum statement work exactly like their C++ counterparts, but the #Const statement is a bit different. The VB "preprocessor" (and I use that term loosely) isn't as flexible as the C++ preprocessor. Instead of allowing arbitrary replacement of code via the #define statement, VB only allows constant definitions via the #Const statement. This statement is typically used for conditional inclusion of code within #If-#ElseIf-#Else-#End If blocks. In addition to the #Const values your programs define, VB provides the predefined constants Win16 and Win32 for source code compatibility between 16-bit and 32-bit Windows platforms. The following code shows an example of using the VB preprocessor as well as the Const and Enum statements:

	#Const DEBUGMODE = 1

Const MAX_INTS As Integer = 4

Enum Bits

 bit0 = &H1 ' Hex notation

 bit1 = &H2

 bit2 = &H4

 bit3 = &H8

End Enum

Sub main()

#If DEBUGMODE Then

 MsgBox "Debugging..."

#End If

 Dim ints(MAX_INTS) As Integer

 ints(0) = bit0

End Sub

Variants If you cannot decide which type you would like under C++, use a union. VB doesn't have unions, but it does have variants. A variant can hold data of any type and it will convert itself as needed. This self-conversion includes self-promotion. If you have a variant holding data of one type and the operation you perform on it would normally overflow the range of that type, the variant will be promoted to the next largest type, e.g. a single will be promoted to a double.

In addition to holding normal data, variants have two special values. Empty means that the variant hasn't been initialized yet, and Null means that the Variant holds no data. Null is especially valuable because it's distinguishable from zero (unlike in C++ where zero and NULL are the same).

If you need to determine what type a Variant is, the VarType() function returns one of the Variant type constants, like vbNull or vbInteger. If you would rather have a string description of a Variant type, you can use the TypeName() function. Figure 3 shows an example of using a Variant for different data types and how the VarType() and TypeName() functions can be used.

Objects The single best thing about Visual Basic is its support for classes and objects. Just like C++, VB can support private and public member functions (called methods) and member data (called properties). Creating a new class is simply a matter of adding a new class module to your VB project and adding properties and methods.

The Object type, and user-defined class types, are just object references. Creating an object is accomplished by setting the result of the New operator to an object reference variable. An object is destroyed when there are no more references to it. A reference to an object will go away implicitly when an object reference variable goes out of scope or explicitly when the object reference variable is set to the special value Nothing. Figure 4 is an example of declaring a user-defined class and Figure 5 is an example of using it.

Just like C++, VB supports constructors, destructors, polymorphism, runtime type identification (like the C++ dynamic_cast operator), encapsulation, abstraction and inheritance (although only VB5+ and only inheritance of interface). Unlike C++, all VB classes can be exposed for use in other languages and other processes (even across the network). The ability to expose classes is a direct result of how VB provides its objects: COM. All VB objects are COM objects, even the intrinsic objects like Form, Button and Label. This makes VB the first direct-to-COM compiler.

There is a lot more to classes and objects in VB. A full description of VB's support for objects and COM is beyond the scope of this article.

Flow control

You can only get so far using just variables. Eventually, you'll need to make a decision or change the flow of your program in some way. Just like C++, VB supports if statements and case statements; for-loops, do-loops and while-loops; and goto statements. All of them work similarly to their C++ counterparts except that some are more flexible. Specifically, the Case statement allows testing for ranges and Boolean expressions in addition to simple equality. There is no need for a break because Case statements never fall through (when was the last time you meant that to happen in C++?).

To make a decision, you're going to need comparison and logical operators. The comparison operators are =, <=, >=, <, > and <> (inequality). The logical operators are And, Or and Not and they are equivalent to the &&, || and ! operators in C++. For bit-wise operations, VB reuses the logical And, Or and Not as well as providing the Eqv (equivalence), Imp (implies) and Xor (exclusive or) operators.

VB supports one additional flow control construct that C++ doesn't: for each-loops. Since arrays (and other kinds of collections) can support an index lower bound that is not zero, and since you often are not concerned with what the index is anyway, VB provides the for-each construct to iterate over each element without referring to an index. Figure 6 shows an example of the for-each loop as well as the other flow control constructs available in VB.

Functions and procedures

In the interest of modular code, you are likely to want to have your program inhabit more than just main(). There are two ways to do this in VB: functions and procedures. Functions return a value and procedures don't. A function is defined with the Function statement and a procedure is defined with the Sub statement; (for example, Sub main()). Otherwise, functions and procedures are the same. They both take parameters the same way, including support for named parameters, optional parameters and variable-length parameter lists.

Functions and procedure routines live in modules. Routines marked as Public can be accessed from any module while those marked as Private can only be accessed inside the module. To call a Public routine in one module from another, prefix the name of the module and a dot before the name of the routine, e.g. Module1.MyFunc. If you imagine a VB module as a C++ namespace, you'll have it.

Parentheses Calling a routine is a little different in VB than in C++. Do not wrap your argument list in parentheses if you are calling a procedure(unlike C++). If you are calling a function and you would like to handle the return value, wrap your argument list in parentheses (just like C++). However, if you're calling a function just as if it were a procedure, i.e. you're not handling the return value, call it like a procedure by not using parentheses. While this may seem strange to the average C++ programmer, it all boils down to one simple rule: If you need the return value from a routine, use parentheses; otherwise do not.

Why is all of this such a big deal if Visual Basic notifies you of errors as you type? Because other uses of the parentheses are valid when calling functions and procedures that have nothing to do with wrapping lists of parameters. For example, wrapping a single parameter in parentheses changes how the parameter is passed. If it's a parameter of any type besides Object, the parameter is changed from pass-by-reference to pass-by-value. On the other hand, if it is a parameter of the Object type, the object's default property is sent instead of a reference to the object. These can be handy features to have, but unless you know about them, they can cause different behavior than you would expect.

Parameters Once you have figured out how the parentheses work, you are now qualified to actually pass parameters. Function and procedure routines both take parameters in the same way, i.e. by value or by reference. This is specified using the ByVal or ByRef modifiers in front of the parameter. If no modifier is specified, the default is by reference. Be careful. The default behavior is to allow routines to change variables passed as parameters. This is certainly different than in C++, so it's a good idea to be explicit about how parameters are passed into your routines.

In the same way that C++ supports default arguments, VB supports optional parameters. Variant parameters can be marked as Optional in the argument list. Unlike C++, however, in VB initial values for missing parameters must be set explicitly in the function or procedure body. To determine whether a parameter was passed or not, use the IsMissing() function on each optional parameter.

For situations in which a fixed number of arguments are not enough, VB also supports a variable number of parameters. A parameter list that ends in an array of Variants marked as a ParamArray, will take zero or more optional parameters. These values can be passed by value only (although it is illegal to mark them ByVal).

Returning Once the flow of control reaches the end of a routine, it will return to its caller. A procedure or a function can be ended early by using the Exit Sub or Exit Function statements respectively, just like the return statement in C++. Unlike the return statement, however, in VB a function's return value is set by using the name of the function on the left hand side of an assignment statement, just like assignment to a variable. A function's return value that is not set before the function is ended will default to "zero" just like an uninitialized variable.

Figure 7 shows an example of defining and using functions and procedures in Visual Basic.

Error handling

Just as in C++, the preferred error handling technique in VB is via exceptions. The global Err object has a Raise() method that takes a user-defined error number and some optional parameters like the description and source of the error. When an error occurs, a function or procedure routine can halt execution by raising an exception like this:

	Sub CallMe()

 Err.Raise 1, "CallMe() function", "Test error"

End Sub

To catch the exception, the caller must proceed the call to the routine with an On Error statement specifying whether to resume on the next line of code or to go to a label in the routine. When an exception is thrown, the caller can get at the arguments to the Raise() method via the properties of the Err object like this:

	Sub main()

 ' Handle the exception

 On Error GoTo HandleException

 CallMe

HandleException:

 MsgBox Err.Description, vbOK, _

 "Error #" & Err.Number & " from " & Err.Source

 ' Let VB handle the exception

 On Error GoTo 0

 CallMe

End Sub

Summary

As you can see, the differences between the syntax and capabilities of C++ and VB are minor. VB does have some significant advantages, though. Removing the burden of memory management and providing direct integration with COM makes VB great for applications and higher-level components. Of course, VB is unsurpassed in gluing together COM components and building user interfaces.

However, isn't VB much slower than C++? While it is true that interpreted VB is slower than compiled C++, I believe the clunky nature of most of the VB programs have more to do with who is developing them than the features of the language. Even if you were a journalism major, it is not likely that you are qualified to optimize code in any language. VB is so much easier that you do not need a Computer Science degree to get your work done, but it certainly helps if you want to get your work done well.

Once VB can be compiled (any day now), won't it be nice to spend your weekends at home?

	Figure 1 - Using VB types

	Sub main()

 ' Declare and initialize a string.

 Dim sGreeting As String

 sGreeting = "Greetings, "

 ' Concentenation of two strings

 sGreeting = sGreeting + "Planet Earth"

 ' Find the comma in the string.

 ' Note: Strings are 1-based, not 0-based.

 Dim nComma As Integer

 nComma = InStr(sGreeting, ",")

 ' What proportion of the string

 ' is before the comma?

 Dim dblPercent As Double

 dblPercent = nComma / Len(sGreeting)

 ' Have we found the comma?

 Dim bCommaFound As Boolean

 If nComma > 0 Then

 bCommaFound = True

 Else

 bCommaFound = False

 End If

 ' Commas cost extra

 Dim currCost As Currency

 If bCommaFound Then

 currCost = 1.25

 Else

 currCost = 1

 End If

 ' The beginning of DOS time

 ' (plus the pause inherent in one comma)

 Dim dateDOS As Date

 dateDOS = #1/1/1900 12:00:01 AM#

End Sub

	Figure 2 - VB static and dynamic arrays

	Sub main()

 dim nElements as Integer

 nElements = 10

 ' Static array of variable size

 Dim someInts(nElements - 1) As Integer

 someInts(0) = 1

 ' Static array of 10 elements, index 1-10

 Dim moreInts(1 To 10) As Integer

 moreInts(1) = 2

 ' Static 2-dimensional array, index 0-2, 0-2

 Dim fourInts(2, 2) As Integer

 fourInts(0, 0) = 3

 ' Dynamic array of 10 elements

 Dim dynaInts() As Integer

 ReDim dynaInts(9)

 dynaInts(9) = 4

 ' Resizing the array to hold twice as much

 ReDim Preserve dynaInts(19)

 ' dynaInts(9) is still 4

End Sub

	Figure 3 - Variants

	Sub main()

' A Variant can be anything

 Dim var As Variant

 ' VarType(var) = vbEmpty

 MsgBox TypeName(var), vbOK, var & " is a..."

 ' VarType(var) = vbInteger

 var = 4

 MsgBox TypeName(var), vbOK, var & " is a..."

 ' VarType(var) = vbString

 var = "Four"

 MsgBox TypeName(var), vbOK, var & " is a..."

 ' VarType(var) = vbNull

 var = Null

 MsgBox TypeName(var), vbOK, var & " is a..."

End Sub

	Figure 4 - Declaring the Point class

	' Point properties

Public x As Integer

Public y As Integer

' Point method

Public Function GetPoint() As String

 ' String and non-string concatenation

 GetPoint = "(" & x & ", " & y & ")"

End Function

	Figure 5 - Using a Point object

	Sub main()

 ' Object references start as Nothing

 Dim pt As Point

 ' Create a new object

 Set pt = New Point

 ' Use properties and method

 pt.x = 100

 pt.y = 200

 MsgBox pt.GetPoint(), vbOK, "Get the point?"

 ' Point object destroyed as the

 ' last reference (pt) goes out of scope

End Sub

	Figure 6 - Flow control in VB

	Sub main()

 Dim i As Integer

 Dim ints(9) As Integer

 ' For-loop with optional Step (can be negative)

 For i = 0 To 9 Step 1

 ints(i) = i

 ' If statement

 If i < 2 Then

 MsgBox "Before 2..."

 ElseIf i > 6 Then

 MsgBox "Past 6..."

 Else

 MsgBox "In the gooie center."

 End If

 Next i ' Index name is optional, but helps catch errors

 ' Must have a Variant index in a For-Each

 Dim var As Variant

 For Each var In ints

 If var > 2 And var < 9 Then

 ' Early exit from For loop

 Exit For

 End If

 MsgBox var, vbOK, "var is..."

 Next

 ' Do-While loop to update the array

 i = LBound(ints)

 Do

 ' Cases do not fall through!

 Select Case i

 ' Allowed to combine multiple cases

 Case 0, 1

 ints(i) = 0

 ' Allowed to specify a range

 Case 2 To 6

 ints(i) = 1

 ' Allowed to perform comparison

 Case Is < 8

 ints(i) = 2

 ' The optional default case

 Case Else

 ints(i) = 3

 End Select

 If i > 2 Then

 ' Early exit from Do loop

 Exit Do

 End If

 i = i + 1

 Loop While i <= UBound(ints)

 ' Do-While loop to clear the array

 i = LBound(ints)

 Do

 ints(i) = 0

 i = i + 1

 If i > 3 Then

 ' Early exit via GoTo

 GoTo FinalClear

 End If

 Loop Until i > UBound(ints)

' Goto label

FinalClear:

 ' The same loop as While-Do

 i = LBound(ints)

 Do While i <= UBound(ints)

 ints(i) = 0

 i = i + 1

 Loop

End Sub

	Figure 7 - Functions and Procedures - Option Explicit

	Sub MsgBoxN(ByVal s As String, Optional ByVal n As Variant)

 ' Check for missing optional parameters

 If IsMissing(n) Then

 n = 1

 End If

 Dim i As Integer

 For i = 1 To n

 MsgBox s

 ' Early exit

 If i >= 3 Then

 Exit Sub

 End If

 Next i

End Sub

Sub MsgBoxVar(ParamArray argv() As Variant)

 Dim s As String

 Dim v As Variant

 ' Iterate the parameter array

 For Each v In argv

 s = s + " " & v

 Next v

 MsgBox s

End Sub

Function CallProcs() As Boolean

 ' Call procedure w/ and w/o the optional parameter

 MsgBoxN "Hi", 137

 MsgBoxN "Lo"

 ' Call procedure w/ a variable number of args

 MsgBoxVar "the", "quick", "brown", "fox"

 MsgBoxVar 1, 2, 3

 ' Set the return value of the function

 CallProcs = True

End Function

Sub main()

 Dim bSuccess As Boolean

 bSuccess = CallProcs

End Sub

