Chapter 8
Controls

The basic unit of user interface in WinForms is the control. Everything that interacts directly with the user in a region defined by a container is a control. This includes controls that do everything themselves, standard controls like the TextBox, user controls, which are controls that contain other controls, and even the Form class itself.

This chapter covers the broad categories of the standard controls provided by WinForms, how to build custom and user controls and how to provide support for the most popular kind of inter-control communication, drag ‘n’ drop. If you’d like a survey of the standard controls, refer to Appendix D: Standard WinForms Components & Controls.

Standard Controls

A control is a class that derives from the System.Windows.Forms.Control base (either directly or indirectly) and is responsible for drawing a chunk of the container, which is either a form or another control. WinForms comes with several standard controls available by default on the Toolbox in VS.NET. These controls can be broken up into the following ad hoc categories:
· Action Controls: Controls like Button and Toolbar exist to allow the user click on them to cause something to happen.

· Value Controls: Controls like Label and PictureBox show the user some value, like text or a picture, but don’t allow the user to change the value. Other value controls, like TextBox or the DateTimePicker, allow the user to change the value being displayed.

· List Controls: Controls like the ListBox and the ComboBox show the user a list of data. Other list controls, like the DataGrid, allow the user to change the data directly.
· Container Controls: The GroupBox, Panel and TabControl exist to contain and arrange other controls.
While Appendix D: Standard WinForms Components & Controls lists and shows each of the standard controls, it’s useful to consider each category for the features that the controls share in common.
Action Controls

The action controls are: Button, ToolBar, MenuBar and ContextMenu
. These controls exist to provide something for the user to click on to trigger an action in the application. Each of the available actions is labeled and, in the case of the Toolbar, can have an optional image. The major event the action controls is the Click event:
void button1_Click(object sender, EventArgs e) {

  MessageBox.Show("Ouch!");

}

Except for the Button, the rest of the action controls are actually containers of multiple sub-objects that the user is interacting with. For example, a MainMenu object will contain one or more MenuItem objects, one for each menu item that can fire a Click event:
void exitMenuItem_Click(object sender, EventArgs e) {

  this.Close();

}

The ToolBar control also contains a collection of objects, of type ToolBarButton. However, when the user clicks, the event is sent for the ToolBar itself, so the event handler is responsible for figuring out what button was pressed using the Button property of the ToolBarButtonClickEventArgs:
void toolBar1_ButtonClick(

  object sender, ToolBarButtonClickEventArgs e) {
  if( e.Button == fileExitToolBarButton ) {

    this.Close();

  }

  else if( e.Button == helpAboutToolBarButton ) {

    MessageBox.Show("The standard controls are cool");

  }

}

Since menu items and toolbar buttons often result in the same action, like showing the About box, it’s good practice to centralize the code and call it from both event handlers:
void FileExit() {...}

void HelpAbout() {...}

void fileExitMenuItem_Click(object sender, EventArgs e) {

  FileExit();

}

void helpAboutMenuItem_Click(object sender, EventArgs e) {

  HelpAbout();

}

void toolBar1_ButtonClick(

  object sender, ToolBarButtonClickEventArgs e) {

  if( e.Button == fileExitToolBarButton ) {

    FileExit();

  }

  else if( e.Button == helpAboutToolBarButton ) {

    HelpAbout();

  }

}

If you centralize the handling of an action, you don’t have to worry about what controls trigger it and no matter how many do, all of them will get the same behavior.
While we’re on the topic of ToolBar control, you may be curious as to how images are assigned to each button. Assigning an image to a toolbar button involves creating and indexing into an ImageList, which is a component that holds a list of images for use by controls that display images. Image lists are discussed later in this chapter.
Value Controls
The value controls comprise the set of controls that show and optionally allow editing of a single value. They can be broken down further by the data type of the value:
· String Values: Label, LinkLabel, TextBox, RichTextBox, StatusBar

· Numeric Values: NumericUpDown, HScrollBar, VScrollBar, ProgressBar & TrackBar

· Boolean Values: CheckBox, Radio Buttons

· Date Values: DateTimePicker, MonthCalendar
· Graphic Values: PictureBox, PrintPreviewControl

The string value controls expose a property called Text that contains the value of the control in a string format. The Label control merely displays the text. The LinkLabel control displays the text as if it were an HTML link, firing an event when the link is clicked. The StatusBar control displays the text like a Label (although docked to the bottom of the container, by default), but it also allows for multiple chunks of text separated into panels.

In addition to displaying text, the TextBox control allows the user to edit the text in single or multi-line mode (depending on the value of Multiline property). The RichTextBox controls allows for editing like the TextBox, but also supports RTF (Rich Text Format) data, which includes font and color information as well as graphics. When the Text value of either of these controls changes, the TextChanged event will be fired.
All of the numeric value controls expose a numeric Value property that can range between the values of the Minimum and Maximum properties. The difference is only what UI you’d like to show to the user. When the Value properties change, the ValueChanged property is fired.
The Boolean value controls, CheckBox and RadioButton, both expose a Checked property which reflects whether they’re checked or not. Both Boolean value controls can also be set to a third “indeterminate” state, which is one of the three possible values exposed from the CheckState property. When the CheckState is changed, the CheckedChanged and CheckStateChanged events are fired.
The date value controls allow the user to pick one or more instances of the DateTime type. The MonthCalendar allows the selection of begin and end dates as exposed by the SelectionRange property (signaled by the SelectionRangeChanged event). The DateTimePicker allows the user to enter a single date and time as exposed by the Value property (signaled by the ValueChanged event).
The graphic value controls show images, although neither allows the images to be changed. The PictureBox control shows any image as set by the Image property. The PrintPreviewControl shows a page at a time of a preview of print data generated from a PrintDocument objects (as described in Chapter 7: Printing).
List Controls

If one value at a time is good, than several values at a time must be better. The list controls can show more than one value at a time: ComboBox, CheckedListBox, ListBox, DomainUpDown, ListView, DataGrid and TreeView.

Most of the list controls – ComboBox, CheckedListBox, ListBox, DomainUpDown – show a list of objects exposed by the Items collection. Adding a new item is through this collection:
void Form1_Load(object sender, EventArgs e) {

  listBox1.Items.Add("an item");

}

While this sample showed adding a string object to the list of items, any object can be added:

void Form1_Load(object sender, EventArgs e) {

  DateTime bday = DateTime.Parse("1995-08-30 6:02pm");

  listBox1.Items.Add(bday);

}

To come up with a string to display, the list controls that take objects as items will call the ToString method. To show your own custom times in a list control, simply implement the ToString method:
class Person {

  string name;

  int age;

  public Person(string name, int age) {

    this.name = name;

    this.age = age;

  }

  public string Name {

    get { return name; }

    set { name = value; }

  }

  public int Age {

    get { return age; }

    set { age = value; }

  }

  public override string ToString() {

    return string.Format("{0} is {1} years old", Name, Age);

  }

}

void Form1_Load(object sender, EventArgs e) {

  Person[] boys = { new Person("Tom", 7), new Person("John", 8) };

  foreach( Person boy in boys ) {

    listBox1.Items.Add(boy);

  }

}

Figure 1 shows the instances of the custom type shown in a ListBox control.

[image: image1.png]
Figure 1: Custom type shown in a ListBox control

Because the ListView control can show items with multiple columns and states, its Items collection is populated with instances of the ListViewItem class. Each item has a Text property, which represents the text of the first column and then a collection of sub-items that represent the rest of the columns:
void Form1_Load(object sender, EventArgs e) {

  Person[] boys = { new Person("Tom", 7), new Person("John", 8) };

  foreach( Person boy in boys ) {

    // NOTE: Assumes Columns collection already has 2 columns

    ListViewItem item = new ListViewItem();

    item.Text = boy.Name;

    item.SubItems.Add(boy.Age.ToString());

    listView1.Items.Add(item);

  }

}

Figure 2 shows the multi-column ListView filled with this code.
[image: image2.png]
Figure 2: Multi-column ListView
The TreeView control shows a hierarchy of items that are instances of the TreeNode type, which contains the text, some optional images and a Nodes collection containing sub-nodes. Which node you add to determines where the newly added node will show up in the hierarchy:
void Form1_Load(object sender, EventArgs e) {

  TreeNode parentNode = new TreeNode();

  parentNode.Text = "Chris";

  // Add a node to the root of the tree

  treeView1.Nodes.Add(parentNode);

  TreeNode childNode = new TreeNode();

  childNode.Text = "John";

  // Add a node under an existing node

  parentNode.Nodes.Add(childNode);

}

Figure 3 shows the result of filling a TreeView control using this sample code.

[image: image3.png]
Figure 3: A parent node and a child node in a TreeView control
The DataGrid control gets its data from a collection set using the DataSource property:
void Form1_Load(object sender, EventArgs e) {

  Person[] boys = { new Person("Tom", 7), new Person("John", 8) };

  dataGrid1.DataSource = boys;

}

The DataGrid will show each public property of the objects in the collection as a column, as shown in Figure 4.

[image: image4.png]
Figure 4: A DataGrid showing a collection of custom types

A DataGrid can also show hierarchical data and do all kinds of other fancy things. Many more details about the DataGrid control are provided in Chapter 13: Data Binding & Data Grids.
List Item Selection
Each of the list controls exposes a property to report the current selection (or a list of selections, if the list control supports multiple selections) and fires an event when the selection changes. For example, the following code handles the SelectedIndexChanged event of the ListBox control and uses the SelectedIndex property to pull out the currently selected object:
void listBox1_SelectedIndexChanged(object sender, EventArgs e) {

  // Get the selected object

  object selection = listBox1.Items[listBox1.SelectedIndex];

  MessageBox.Show(selection.ToString());

  // The object is still the same type as when we added it

  Person boy = (Person)selection;

  MessageBox.Show(boy.ToString());

}

Notice that the SelectedIndex property is an offset into the Items collection to pull out the currently selected item. The item comes back as the “object” type, but a simple cast allows us to treat it as an instance of the exact same type as when it was added. This is useful when a custom type shows some data using ToString but has other characteristic, like a unique identifier, that is needed programmatically. In fact, for the list controls that don’t take objects, like the TreeView and the ListView, each of the items supports a Tag property to stash away some unique ID information:
void Form1_Load(object sender, EventArgs e) {

  TreeNode parentNode = new TreeNode();

  parentNode.Text = "Chris";

  parentNode.Tag = "555-12-4545"; // Put in extra info
  treeView1.Nodes.Add(parentNode);

}

void treeView1_AfterSelect(object sender, TreeViewEventArgs e) {

  TreeNode selection = treeView1.SelectedNode;

  object tag = selection.Tag; // Pull out extra info

  MessageBox.Show(tag.ToString());

}

The list controls that support custom types don’t also support the Tag property. The thinking is that since the lists contain instances of custom types, that any extra information can simply be kept as needed. Unfortunately, the lack of a Tag property makes associating ID information with simple types, like strings, more difficult. However, a very simple wrapper will allow you to add a tag to a list item of any type:
class TaggedItem {

  public object Item;

  public object Tag;

  public TaggedItem(object item, object tag) {

    this.Item = item;

    this.Tag = tag;

  }

  public override string ToString() {

    return Item.ToString();

  }

}

void Form1_Load(object sender, EventArgs e) {

  // Add two tagged strings

  comboBox1.Items.Add(new TaggedItem("Tom", "555-12-4547"));

  comboBox1.Items.Add(new TaggedItem("John", "555-12-4546"));

}

void comboBox1_SelectedIndexChanged(object sender, EventArgs e) {

  TaggedItem selection =

    (TaggedItem)comboBox1.Items[comboBox1.SelectedIndex];

  object tag = selection.Tag;

  MessageBox.Show(tag.ToString());

}

The TaggedItem wrapper keeps track of an item and a tag. The ToString method lets the item decide how it should be displayed, while the Item and the Tag properties expose the parts of the TaggedItem object for use in processing the current selection.
Container Controls

While the list controls hold multiple objects, the job of the container controls (GroupBox, Panel and TabControl) is to hold multiple controls. While not a container itself, the Splitter control can be used with container controls docked to a container’s edge for sizing. All of the anchoring, docking, splitting and grouping principles covered in Chapter 2: Forms apply to container controls as well. Figure 5 shows an example of some container controls in action.
[image: image5.png]
Figure 5: Container controls in action

Figure 5 shows a GroupBox on the left, docked to the left edge of the containing form, and a TabControl with two TabPage controls on the right, split with a Splitter control in the middle.
The GroupBox sets the caption of the group using its Text property. The Panel has no label. The TabControl is really a container of TabPage controls. It’s the TabPage controls that contain other controls and the Text property shows up as the label of the tab.
The only other interesting member of a contain control is the Controls collection, which holds the list of contained controls. For example, the list box in Figure 5 is contained by the group box’s Controls collection:
void InitializeComponent() {

  ...

  // groupBox1

  this.groupBox1.Controls.AddRange(

    new System.Windows.Forms.Control[] {

      this.listBox1});

  ...

  // Form1

  this.Controls.AddRange(

    new System.Windows.Forms.Control[] {

      this.tabControl1,

      this.splitter1,

      this.groupBox1});

  ...

}

Notice in the form’s InitializeComponent that the group box’s Controls collection is used to contain the list box and the form’s Controls collection is used to contain the tab control, the splitter and the group box. It’s a child control’s container that determines how a control is arranged. For example, when the list box’s Dock property is set to Fill, the docking is relative to its container, the group box, and not the form which actually creates the control. When a control is added to a container’s Controls collection, the container control becomes the child control’s parent. A child control can discover its container using its Parent property.
ImageLists

In addition to showing text data, several of the controls can show optional images: TabPage, ToolBarButton, ListView and TreeView <<TODO: more?>>. These controls get their images from an instance of the ImageList component. The ImageList component provides Designer-support for adding images at design-time and then exposes them by index number to controls that make use of them.

Each image-capable control will expose one or more properties of type ImageList. This property is named ImageList if the control supports a single set of images or contains the phrase ImageList if the control supports more than one list of images. For example, the TabControl exposes the ImageList property for use by all of the contained TabPage controls, whereas the ListView control exposes the LargeImageList, SmallImageList and StateImageList properties for the three kinds of images it can display.

Regardless of the number of ImageList properties a control supports, when an item requires a certain image from the ImageList, it will expose an index property to offset into the ImageList component’s list of images. The following is an example of adding an image to each of the items in a TreeView control:
void InitializeComponent() {

  ...

  this.treeView1 = new TreeView();

  this.imageList1 = new ImageList(this.components);

  ...

  // ImageList associated with the TreeView
  this.treeView1.ImageList = this.imageList1;

  ...

  // Images read from Form's resources
  this.imageList1.ImageStream = ...; 

  ...

}

void Form1_Load(object sender, EventArgs e) {

  TreeNode parentNode = new TreeNode();

  parentNode.Text = "Chris";

  parentNode.ImageIndex = 0; // Dad image

  parentNode.SelectedImageIndex = 0;

  treeView1.Nodes.Add(parentNode);

  TreeNode childNode = new TreeNode();

  childNode.Text = "John";

  childNode.ImageIndex = 1; // Son image

  childNode.SelectedImageIndex = 1;

  parentNode.Nodes.Add(childNode);

}

Using the Designer to associate images with the ImageList component causes the images themselves to be stored in form-specific resources
. InitializeComponent pulls them in at run-time by setting the image list’s ImageStream property, as well as associating the image list with the tree view by setting the tree view’s ImageList property. Each node in a tree view supports two image indexes, the default image and the selected image. Each of these properties index into the image list associated with the tree view. Figure 6 shows the result.
[image: image6.png]
Figure 6: A TreeView using an ImageList

By collecting related images into an ImageList component, setting images in a control is as simple as associating the appropriate image list (or image lists) with the control and then setting each image index as appropriate. The work of drawing the image is handled by the control itself.
Owner Draw Controls

Image lists allow you to augment the display of certain controls with an image. If you’d like to take over the drawing of a control completely, owner draw controls support this very thing. An owner-draw control is a control that provides events that allow a controls owner (or the control itself) to take over the drawing chores from the control in the underlying operating system.

Controls that allow owner draw, like the menus, some of the list controls, the tab page control and status bar panel control, expose a property that turns owner drawing on and then fires events to let the container know to do the drawing. For example the ListBox control exposes the DrawMode property which can be one of the following values from the DrawMode enumeration:

enum DrawMode {

  Normal, // Control draws its own items (default)

  OwnerDrawFixed, // Fixed size custom drawing of each item 
  OwnerDrawVariable, // Variable size custom drawing of each item
}

Figure 7 shows an owner draw ListBox control that changes the style to Italics when it’s drawing the selected item.
[image: image7.png]
Figure 7: Owner Drawn List Box

Handling the drawing for a ListBox requires first setting the DrawMode property to something other than Normal (the default) and handling the ListBox control’s DrawItem event:
void InitializeComponent() {

  ...

  this.listBox1.DrawMode = DrawMode.OwnerDrawFixed;

  ...

}

void listBox1_DrawItem(object sender, DrawItemEventArgs e) {

  // Draw the background

  e.DrawBackground();

  // Get the default font

  Font drawFont = e.Font;

  bool ourFont = false;

  // Draw in italics if selected

  if( (e.State & DrawItemState.Selected) == DrawItemState.Selected ) {

    ourFont = true;

    drawFont = new Font(drawFont, FontStyle.Italic);

  }

  using( Brush brush = new SolidBrush(e.ForeColor) ) {

    // Draw the listbox item

    e.Graphics.DrawString(listBox1.Items[e.Index].ToString(), 

      drawFont, 

      new SolidBrush(e.ForeColor), 

      e.Bounds);

    if( ourFont ) drawFont.Dispose();

  }

  // Draw the focus rectangle

  e.DrawFocusRectangle();

}

The DrawItem method comes with the DrawItemEventArgs object:
The DrawItem event provides an instance of the DrawItemEventArgs class (and the interesting members are shown here):

class DrawItemEventArgs : EventArgs {

  // Properties

  public Color BackColor { get; }

  public Rectangle Bounds { get; }

  public Font Font { get; }

  public Color ForeColor { get; }

  public Graphics Graphics { get; }

  public int Index { get; }

  public DrawItemState State { get; }

  // Methods

  public virtual void DrawBackground();

  public virtual void DrawFocusRectangle();

}

The DrawItem event is called whenever the item is drawn or when the item’s state changes. DrawItemEventArgs object provides all the information you’ll need to draw the item in question, like the index of the item being drawn, the bounds of the rectangle to draw in, the preferred font, the preferred color of the foreground and background and the Graphics object to do the drawing on. It also provides the selection state so that you can draw selected items differently (as our example does). DrawItemEventArgs also provides a couple of helper methods for drawing the background and the focus rectangle if necessary, which you’ll usually use to bracket your own custom drawing.
When setting the DrawMode to OwnerDrawFixed, each item’s size is set for you. If you’d like to influence the size, too, you can set the DrawMode to OwnerDrawVariable and, in addition to doing the drawing in the DrawItem handler, you can specify the height in the MeasureItem handler:
void InitializeComponent() {

  ...

  this.listBox2.DrawMode = OwnerDrawVariable;

  ...

}

void listBox2_MeasureItem(object sender, MeasureItemEventArgs e) {

  // Make every even item double high
  if( e.Index % 2 == 0 ) e.ItemHeight *= 2;

}

The MeasureItem event provides an instance of the MessageItemEventArgs class, which provides useful properties for getting and setting each item’s height:

class MeasureItemEventArgs : EventArgs {

  // Properties

  public Graphics Graphics { get; }

  public int Index { get; }

  public int ItemHeight { get; set; }

  public int ItemWidth { get; set; }

}

Figure 8 shows the effects of doubling even item’s height.

[image: image8.png]
Figure 8: An owner draw list box using variable height

Unlike the DrawItem event, the MeasureItem event is only called for every item in the control, so things like selection state can’t be a factor when deciding how big to make the space for the item.
ControlPaint

Often owner drawing is used to draw a control that looks just like an existing Windows control, but it has one minor addition, like adding an image to a menu item. In those cases, you’d like to avoid spending any time duplicating how every version of Windows draws its controls, which is what the ControlPaint helper class is provided for. The ControlPaint class has static members for drawing common controls, lines, grids and types of text:

sealed class ControlPaint {

  // Properties

  public static Color ContrastControlDark { get; }

  // Methods

  public static IntPtr CreateHBitmap16Bit(...);

  public static IntPtr CreateHBitmapColorMask(...);

  public static IntPtr CreateHBitmapTransparencyMask(...);

  public static Color Dark(...);

  public static Color DarkDark(...);

  public static void DrawBorder(...);

  public static void DrawBorder3D(...);

  public static void DrawButton(...);

  public static void DrawCaptionButton(...);

  public static void DrawCheckBox(...);

  public static void DrawComboButton(...);

  public static void DrawContainerGrabHandle(...);

  public static void DrawFocusRectangle(...);

  public static void DrawGrabHandle(...);

  public static void DrawGrid(...);

  public static void DrawImageDisabled(...);

  public static void DrawLockedFrame(...);

  public static void DrawMenuGlyph(...);

  public static void DrawMixedCheckBox(...);

  public static void DrawRadioButton(...);

  public static void DrawReversibleFrame(...);

  public static void DrawReversibleLine(...);

  public static void DrawScrollButton(...);

  public static void DrawSelectionFrame(...);

  public static void DrawSizeGrip(...);

  public static void DrawStringDisabled(...);

  public static void FillReversibleRectangle(...);

  public static Color Light(...;

  public static Color LightLight(...);

}

For example, to draw disabled text in an owner draw status bar panel using ControlPaint looks like this:

void statusBar1_DrawItem(object sender, StatusBarDrawItemEventArgs e) {

  // Panels don't draw with their BackColor,

  // so it's not set to something reasonable and

  // therefore e.DrawBackground() isn't helpful.

  // Instead, use the BackColor of the StatusBar, which is the sender

  StatusBar statusBar = (StatusBar)sender;

  using( Brush brush = new SolidBrush(statusBar.BackColor) ) {

    e.Graphics.FillRectangle(SystemBrushes.Control, e.Bounds);

  }

  // Draw text as disabled

  StringFormat format = new StringFormat();

  format.LineAlignment = StringAlignment.Center;

  format.Alignment = StringAlignment.Center;

  ControlPaint.DrawStringDisabled(

    e.Graphics, "Hi!", this.Font, this.ForeColor, e.Bounds, format);

}

The thing that makes the ControlPaint class handy is that it takes into account the conventions between versions of the operating system about the latest way to draw whatever it is you’re trying to draw. So, instead of manually trying to duplicate how Windows is drawing disabled text this time, Figure 9 shows the results of letting ControlPaint do it for us.
[image: image9.png]
Figure 9: An owner drawn status bar panel using ControlPaint

As nifty as ControlPaint is, as of .NET 1.1, it doesn’t take theming into account. If you are using a themed operating system (e.g. Windows XP or Windows 2003 Server) the artifacts drawn by ControlPaint will not be themed. While ControlPaint doesn’t support themed drawing, WinForms has some support for it in the standard controls, as discussed in Chapter 11: Applications & Settings.
Custom Controls

While owner draw controls allow a great deal of control over how a control draws itself, to take full command of how a control acts requires building a custom control. There are three main kinds of custom controls:

1. Controls that derive directly from the Control base class allow you to build handle your control’s input and output completely

2. Controls that derive from ScrollingControl are like controls that derive from Control, but also provide built-in support for scrolling

3. Controls that derive from an existing controls to extend their behavior
The kind of control you choose depends on what kind of functionality you need. If you need something that’s fundamentally new, you’ll be deriving from Control or ScrollingControl, depending on whether you need scrolling or not. Deriving from one of the existing controls is useful if an existing control almost does what you want. The following sections discuss how to build all three of these kinds of custom controls.
Deriving Directly from Control
In VS.NET, if you right-click on your project in the Solution Explorer and choose Add->Add New Item->Custom Control, you’ll get the following skeleton:
using System;

using System.Collections;

using System.ComponentModel;

using System.Drawing;

using System.Data;

using System.Windows.Forms;

namespace MyCustomControls {

  /// <summary>

  /// Summary description for CustomControl1.

  /// </summary>

  public class CustomControl1 : System.Windows.Forms.Control {

    public CustomControl1() {

    }

    protected override void OnPaint(PaintEventArgs pe) {

      // TODO: Add custom paint code here

      // Calling the base class OnPaint

      base.OnPaint(pe);

    }

  }

}

This skeleton derives from the Control base class and provides a handler for the Paint event. It even provides a helpful comment letting you know where to add your custom code to render your custom control’s state.
Testing Custom Controls

Once you’ve worked with your custom control a while, you’re going to want it to show up on the Toolbox so that you can use it places. To do this, right-click the toolbox and select “Customize Toolbox”. To select a .NET assembly, select the .NET Framework Component tab and press the Browse button. When you do that, you will get the Custom Toolbox dialog showing the .NET components that VS.NET knows about, as shown in Figure 10.

[image: image10.png]
Figure 10: Customizing the Toolbox

Find the assembly that your control lives in and press OK. If you are writing a Windows Forms application and writing your custom control in the same assembly, select the application’s .EXE file as the assembly. Even controls from applications are available for reuse, although DLLs are the preferred vehicle for distributing reusable controls.

After you’ve selected the assembly to add, the public controls will be added to the Toolbox, as shown in Figure 11.

[image: image11.png]
Figure 11: Custom controls added to the Toolbox in VS.NET

While it’s possible to customize any of the tabs on the Toolbox, it’s handy to have custom tabs for custom controls so that they don’t get lost amongst the standard controls and components. Figure 11 shows custom controls organized on the “My Custom Controls” tab.
Once your control is available on the Toolbox, you can drop it onto a Form and use the Property Browser to set all public properties and handle all public events. All of this is comes essentially for free for inheriting from the Control base. For the details of how to customize your control’s interaction with the Designer and the Property Browser, see Chapter 9: Design-Time Integration.

Control Rendering

Looking back at the skeleton code generated by the Designer for a custom control, remember that it handles the Paint event by deriving from the Control base class and overriding the OnPaint method. Because we’re deriving from the Control class, we have two options when deciding how to handle a method. The first option is to add a delegate and handle the event. This is the only option available when handling a control’s event from a container. The second option is to override the virtual method that the base class provides that actually fires the methods. By convention, these methods are named On<EventName> and take an object of the EventArgs (or EventArgs-derived) class. When overriding an event method, remember to call to the base class’s implementation of the method so that all of the event subscribers will be notified.

For example, implementing OnPaint for a custom label-like control could be done like so:
public class EllipseLabel : Control {

  public EllipseLabel() {

    // Required for Designer support

    InitializeComponent();

  }

  protected override void OnPaint(PaintEventArgs pe) {

    // Custom paint code

    Graphics g = pe.Graphics;

    using( Brush foreBrush = new SolidBrush(this.ForeColor) )

    using( Brush backBrush = new SolidBrush(this.BackColor) ) {

      g.FillEllipse(foreBrush, this.ClientRectangle);

      StringFormat fmt = new StringFormat();

      fmt.Alignment = StringAlignment.Center;

      fmt.LineAlignment = StringAlignment.Center;

      g.DrawString(

        this.Text, this.Font, backBrush, this.ClientRectangle, fmt);

    }

    // Calling the base class OnPaint

    base.OnPaint(pe);

  }

}

In this code, notice how much functionality is available from the base class without adding any new properties, methods or events. In fact, the shear amount of functionality in the base Control class is too large to list here. Many of the properties have corresponding <PropertyName>Changed events to track when they change. For example, because the state of our custom label-like control depends on the state of the BackColor, ForeColor, Text, Font and ClientRectangle properties, when any of those change, we need to apply the principles of drawing and invalidation from Chapter 4: Drawing Basics to keep the control visually up to date:
public EllipseLabel() {

  // Required for Designer support

  InitializeComponent();

  // Automatically redraw when resized
  // (See Chapter 6: Advanced Drawing for ControlStyles details)
  this.SetStyle(ControlStyles.ResizeRedraw, true);

}

void InitializeComponent() {

  this.TextChanged += new EventHandler(this.EllipseLabel_TextChanged);
}

void EllipseLabel_TextChanged(object sender, EventArgs e) {

  this.Invalidate();

}

In this case, we track when the Text property has changed by using the Designer
 to set up an event handler for the TextChanged event (saving us from typing in the event handler skeleton or remembering to call the base class). When the text changes, we invalidate our control’s client area. However, none of the BackColorChanged, FontChanged nor ForeColorChanged events needs to be tracked because the base class knows to invalidate the client area of the control in those cases for us. Those properties are special.
Ambient Properties

The reason that the base class knows to treat some properties specially is because they are ambient properties. An ambient property is a property that, if it’s not set in the control, will be “inherited” from the container. Of all of the standard properties provided by the Control base class, only four are ambient: BackColor, ForeColor, Font and Cursor. As an example, imagine an instance of the EllipseLabel control and a button hosted on a form container, as in Figure 14.

[image: image12.png]
Figure 14: The EllipseLabel custom control hosted on a form
All of the settings for the Form, the EllipseLabel control and the Button control are the defaults with respect to the Font property, which means that on my Windows XP machine running at normal-sized fonts, the two controls are showing with MS Sans Serif 8.25pt font. Since the EllipseLabel control takes its own Font property into account when drawing, changing its Font property to Impact 10pt in the Property Browser yields code like this:

void InitializeComponent() {

  ...

  this.ellipseLabel1.Font = new Font("Impact", 10F, ...);

  ...

}

The result looks like Figure 15.
[image: image13.png]
Figure 15: Setting the Font property on the EllipseLabel control
This works great if you’re creating a fun house application where different controls have different fonts, but more commonly, all of the controls in a container will share the same font. While it’s certainly possible to use the Designer to set the fonts for each of the controls individually, it’s even easier to leave the font alone on the controls and set the font on the form, like so:
void InitializeComponent() {

  ...

  this.Font = new Font("Impact", 10F, ...);

  ...

}

Because the Font property is ambient, setting the font on the container sets the fonts on the contained controls as well, as shown in Figure 16.
[image: image14.png]
Figure 16: Setting the Font property on the hosting Form

By setting the Font property on the container and leaving the Font property at the default value
 for the controls, the control “inherits” the Font property from the container. Likewise, a contained control can “override” an ambient property by setting it to something besides the default, like so:
void InitializeComponent() {

  ...

  this.ellipseLabel1.Font = new Font("Times New Roman", 10F, ...);
  ...

  this.Font = new Font("Impact", 10F, ...);

  ...
}

Notice that the form’s font is set after the EllipseLabel control’s font. It doesn’t matter in which order the ambient properties are set. If a control has its own value for an ambient property, that value will be used instead of the containers value. The result of the contained EllipseLabel control overriding the ambient Font property is shown in Figure 17.

[image: image15.png]
Figure 17: A contained control overriding the value of the ambient Font property
Also, if you need to reset the ambient properties to a default value, you can do this with Control class’s Reset<PropertyName> methods:

ellipseLabel1.ResetFont();
Ambient properties exist to allow containers to specify a look and feel that all of the contained controls share without any special effort. However, in the event that a particular control needs to override the property inherited from its container, that can happen without incident.
Custom Functionality

In addition to the standard properties that a control gets from the Control base class, the state that a control has to render will come from new public methods and properties which are exposed like they would be exposed from any .NET class:
// Used to prepend to Text property at output

string prefix = "";

public void ResetPrefix() {

  this.Prefix = ""; // Uses Prefix setter
}

public string Prefix {

  get { return this.prefix; }

  set {

    this.prefix = value;

    this.Invalidate();

  }

}

protected override void OnPaint(PaintEventArgs pe) {

  ...

  g.DrawString(this.prefix + this.Text, ...);

  ...

}

In this case, we’ve got some extra control state modeled with a string field named “prefix”. The prefix is shown just before the Text property when the control paints itself. The prefix field itself is private, but it can be affected by calling the public ResetPrefix method or getting or setting the public Prefix property. Notice that whenever the prefix field changes, the control invalidates itself so that it can maintain a visual state that’s consistent with its internal state.
Since the Prefix property is public, it shows up directly in the Property Browser when an instance of the Ellipse Control is selected on a design surface, as shown in Figure 18.
[image: image16.png]
Figure 18: A custom property in the Property Browser

Custom Events

The Property Browser will show any public property without you doing anything special to make it work. Likewise, any public events
 will show up there, too. For example, if we wanted to fire an event when the Prefix property changed, you could expose a public property and expose it like so:
// Let clients know of changes in the Prefix property

public event EventHandler PrefixChanged;

public string Prefix {

  get { return this.prefix; }

  set {

    this.prefix = value;

    // Fire PrefixChanged event 

    if( this.PrefixChanged != null ) {

      PrefixChanged(this, EventArgs.Empty);

    }

    this.Invalidate();

  }

}

Notice that this code exposes a custom event called PrefixChanged of type EventHandler, which is the default delegate type for events that don’t need special data. When the prefix field is changed, the code looks for event subscribers and lets them know that the prefix has changed, passing in the sender (the control itself) and an empty EventArgs object, because we don’t have any additional data to send.
Once your control has a public event, it will show up as just another event in the Property Browser, as shown in Figure 19.

[image: image17.png]
Figure 19: A custom event shown in the Property Browser

Just like any other event, handling a custom event yields a code skeleton for the developer to fill in with functionality, again, without you doing anything but exposing the event as public.
If, when defining your event, you find that you’d like to pass other information along, you can create a custom delegate:

public class PrefixEventArgs : EventArgs {

  public string Prefix;

  public PrefixEventArgs(string prefix) { Prefix = prefix; }

}

public delegate

  void PrefixedChangedEventHandler(object sender, PrefixEventArgs e);

public event PrefixedChangedEventHandler PrefixChanged;

public string Prefix {

  get { return this.prefix; }

  set {

    this.prefix = value;

    // Fire PrefixChanged event 

    if( this.PrefixChanged != null ) {

      PrefixChanged(this, new PrefixEventArgs(value));

    }

    this.Invalidate();

  }

}

Notice that the custom delegate we created uses the same pattern of no return value, an object sender argument and an EventArgs-derived type as the last argument. This is the pattern that .NET follows and it’s a good one for you to emulate with your own custom events. In our case, we’re deriving from EventArgs to pass along a PrefixEventArgs class, which derives from EventArgs and sends the new prefix along to the event handlers, but you can define new EventArgs-derived classes as appropriate for your own custom controls.
Control Input

In addition to providing output and exposing custom methods, properties and events, custom controls are often going to want to handle input, whether its mouse input, keyboard input or both.
Mouse Input

For example, if we wanted to allow let the user click on the EllipseControl and as they drag, adjust the color of the ellipse, we could do so by handling the MouseDown, MouseMove and MouseUp events:

// Track whether mouse button is down

bool mouseDown = false;

void SetMouseForeColor(MouseEventArgs e) {

  int red = (e.X * 255/(this.ClientRectangle.Width - e.X))%256;

  if( red < 0 ) red = -red;

  int green = 0;

  int blue = (e.Y * 255/(this.ClientRectangle.Height - e.Y))%256;

  if( blue < 0 ) blue = -blue;

  this.ForeColor = Color.FromArgb(red, green, blue);

}

void EllipseLabel_MouseDown(object sender, MouseEventArgs e) {

  mouseDown = true;

  SetMouseForeColor(e);

}

void EllipseLabel_MouseMove(object sender, MouseEventArgs e) {

  if( mouseDown ) SetMouseForeColor(e);

}

void EllipseLabel_MouseUp(object sender, MouseEventArgs e) {

  SetMouseForeColor(e);

  mouseDown = false;

}

The MouseDown event is fired when the mouse is clicked inside the client area of the control. The control will continue to get MouseMove events until the MouseUp event is fired, even if the mouse moves out of the region of the control’s client area. The code sample watches the mouse movements when the button is down and calculates a new ForeColor using the X and Y coordinates of the mouse as provided by the MouseEventArgs argument to the events: Dim downPoint As Point = Point.Empty
Sub TransparentForm_MouseDown(sender As Object, e As MouseEventArgs)_



Handles MyBase.MouseDown

 
If e.Button <> MouseButtons.Left Then Return

 
downPoint = New Point(e.X, e.Y)

End Sub

Sub TransparentForm_MouseMove(sender As Object, e As MouseEventArgs)_ 



Handles MyBase.MouseMove

 
If downPoint.Equals(Point.Empty) Then Return

 
Dim location As Point = New Point(Me.Left + e.X - downPoint.X, _



Me.Top + e.Y - downPoint.Y)

 
Me.Location = location

End Sub

Sub TransparentForm_MouseUp(sender As Object, e As MouseEventArgs)_



Handles MyBase.MouseUp


If e.Button <> MouseButtons.Left Then Return

 
downPoint = Point.Empty

End Sub
class MouseEventArgs : EventArgs {

  public MouseButtons Button { get; } // Which buttons are pressed

  public int Clicks { get; } // How many clicks since the last event

  public int Delta { get; } // How many mouse wheel ticks

  public int X { get; } // Current X position relative to the screen

  public int Y { get; } // Current Y position relative to the screen

}

The MouseEventArgs is meant to provide you with the information you need in order to handle mouse event. For example, to eliminate the need to track the mouse button state manually, we could make use of the Button property to check for the left mouse button clicked like so:
void EllipseLabel_MouseDown(object sender, MouseEventArgs e) {

  SetMouseForeColor(e);

}

void EllipseLabel_MouseMove(object sender, MouseEventArgs e) {

  if( (e.Button & MouseButtons.Left) == MouseButtons.Left ) {

    SetMouseForeColor(e);

  }

}

void EllipseLabel_MouseUp(object sender, MouseEventArgs e) {

  SetMouseForeColor(e);

}

Public Class MouseEventArgs

    Inherits EventArgs

 
'Which buttons are pressed

 
Public ReadOnly Property Button() As MouseButtons

 
End Property


'How many clicks since the last event
 
Public ReadOnly Property Clicks() As Integer 
 
End Property


'How many mouse wheel ticks
 
Public ReadOnly Property Delta() As Integer 
 
End Property


'Current X position relative to the screen
 
Public ReadOnly Property X() As Integer 
 
End Property


'Current Y position relative to the screen
 
Public ReadOnly Property Y() As Integer 
 
End Property

End Class

Additional mouse-related input events are MouseEnter, MouseHover and MouseLeave, which can tell you that the mouse is over the control, that it’s hovered for “a while” (useful for showing tool tips) and that it’s left the control’s client area.

If you’d like to know the state of the mouse buttons or the mouse position outside of a mouse event, you can access them from the static MouseButtons and MousePosition properties of the Control class. In addition to MouseDown, MouseMove and MouseUp, there are five other mouse-related events. MouseEnter, MouseHover and MouseLeave allow you to track when a mouse enters, loiters and leaves the control’s client area. Click and DoubleClick provide an indication that the user has clicked or double-clicked the mouse in the control’s client area.
Keyboard Input

In addition to providing mouse input, forms (and controls) can also capture keyboard input via KeyDown, KeyUp and KeyPress events. For example, to make i, j, k and l move our elliptical label around on the container, the EllipseLabel control could handle the KeyPress event:

void EllipseLabel_KeyPress(object sender, KeyPressEventArgs e) {

  Point location = new Point(this.Left, this.Top);

  switch( e.KeyChar ) {

    case 'i':

      --location.Y;

      break;

    case 'j':

      --location.X;

      break;

    case 'k':

      ++location.Y;

      break;

    case 'l':

      ++location.X;

      break;

  }

  this.Location = location;

}

Sub TransparentForm_KeyPress(sender As Object, _



e As KeyPressEventArgs) Handles MyBase.KeyPress


Dim location As Point = New Point(Me.Left, Me.Top)

 
Select Case e.KeyChar

 

Case "i"

    
 
location.Y -= 1

    
Case "j"

    

location.X -= 1

    
Case "k"

       
location.Y += 1

    
Case "l"

    
   location.X += 1

 
End Select

 
Me.Location = location

End Sub
The KeyPress event takes a KeyPressEventArgs argument:

class KeyPressEventArgs : EventArgs {

  public bool Handled { get; set; } // Whether this key is handled

  public char KeyChar { get; } // Character value of the key pressed

} 

Public Class KeyPressEventArgs


Inherits EventArgs


'Whether this key is handled

Public Property Handled() as Boolean 


End Property


'Character value of the key pressed

Public ReadOnly Property KeyChar() as Char 


End Property

End Class

The KeyPressEventArgs object has two properties. The Handled property defaults to false, but can be set to true to indicate that no other handlers should handle the event. The KeyChar property is the character value of the key after the modifier has been applied. For example, if the user presses the ‘I’ key, the KeyChar will be ‘i’, but if the user presses Shift and the ‘I’ key, the KeyChar property will be ‘I’. On the other hand, if the user presses Ctrl+I or Alt+I, we won’t get a KeyPress event at all, as those are special sequences that won’t be sent via the KeyPress event. To handle these kinds of sequences along with other special characters like F-keys or arrows, you’ll need the KeyDown event:

void TransparentForm_KeyDown(object sender, KeyEventArgs e) {

  Point location = new Point(this.Left, this.Top);

  switch( e.KeyCode ) {

    case Keys.I:

    case Keys.Up:

      --location.Y;

      break;

    case Keys.J:

    case Keys.Left:

      --location.X;

      break;

    case Keys.K:

    case Keys.Down:

      ++location.Y;

      break;

    case Keys.L:

    case Keys.Right:

      ++location.X;

      break;

  }

  this.Location = location;

}

Sub TransparentForm_KeyDown(sender As Object, e As KeyEventArgs)__



Handles MyBase.KeyDown

 
Dim location As Point = New Point(Me.Left, Me.Top)

 
Select Case e.KeyCode

 

Case Keys.I, Keys.Up

    

location.Y -= 1

    
Case Keys.J, Keys.Left

      
location.X -= 1

    
Case Keys.K, Keys.Down

       
location.Y += 1

    
Case Keys.L, Keys.Right

    

location.X += 1

 
End Select

 
Me.Location = location

End Sub
Notice that the KeyDown event takes a KeyEventArgs argument (as does the KeyUp event), which is shown here:

class KeyEventArgs : EventArgs {

  public bool Alt { virtual get; } // Whether Alt is pressed

  public bool Control { get; } // Whether Ctrl is pressed

  public bool Handled { get; set; } // Whether this key is handled

  public Keys KeyCode { get; } // The key being pressed, w/o the modifiers

  public Keys KeyData { get; } // The key and the modifiers

  public int KeyValue { get; } // KeyData as an integer

  public Keys Modifiers { get; } // Just the modifiers

  public bool Shift { virtual get; } // Whether Shift is pressed

}

Public Class KeyEventsArgs

 
Inherits EventArgs

 
Public Overrides ReadOnly Property Alt() As Boolean

 
End Property

 
Public ReadOnly Property Control() As Boolean

 
End Property

 
Public Property Handled() As Boolean

 
End Property

 
Public ReadOnly Property KeyCode() As Keys

 
End Property

 
Public ReadOnly Property KeyData() As Keys

 
End Property

 
Public ReadOnly Property KeyValue() As Integer

 
End Property

 
Public ReadOnly Property Modifiers() As Keys

 
End Property

 
Public Overrides ReadOnly Property Shift() As Boolean

 
End Property

End Class
While it looks like the KeyEventArgs object contains a lot of data, it really only contains one thing: a private field exposed via the KeyData property, which is a bit field of the combination of the keys being pressed (from the Keys enumeration) as well as the modifiers being pressed (also from the Keys enumeration). For example, if the “I” key is pressed by itself, KeyData will be Keys.I, whereas if Ctrl+Shift+F2 is pressed, KeyData will be a bitwise combination of Keys.F2, Keys.Shift and Keys.Control. The rest of the properties in the KeyEventArgs object are just handy views of the KeyData property, as shown in Table 1. Also shown is the KeyChar that would be generated in a corresponding KeyPress event.

	Keys Pressed
	KeyData
	KeyCode
	Modifiers
	Alt
	Control
	Shift
	KeyValue
	KeyChar

	I
	Keys.I
	Keys.I
	Keys.None
	false
	false
	false
	73
	‘i’

	Shift+I
	Keys.Shift + Keys.I
	Keys.I
	Keys.Shift
	false
	false
	true
	73
	‘I’

	Ctrl+Shift+I
	Keys.Ctrl + Keys.Shift + Keys.I
	Keys.I
	Keys.Ctrl + Keys.Shift
	false
	true
	true
	73
	n/a

	Ctrl
	Keys.ControlKey + Keys.Ctrl
	Keys.ControlKey
	Keys.Control
	false
	true
	false
	17
	n/a


Table 1: KeyEventArgs and KeyPressEventArgs examples

In spite of the fact that we’re handling the KeyDown event specifically to get special characters, some special characters, like arrows, won’t be sent to the control by default. To enable them, the custom control overrides the IsInputKey method from the base class:
protected override bool IsInputKey(Keys keyData) {

  // Make sure we get arrow keys

  switch( keyData ) {

    case Keys.Up:

    case Keys.Left:

    case Keys.Down:

    case Keys.Right:

      return true;

  }

  // The rest can be determined by the base class

  return base.IsInputKey(keyData);

}

The return from IsInputKey indicates whether the key data should be sent in events to the control or not. In this example, IsInputKey returns true for all of the arrow keys and lets the base class decide what to do about the other keys.

If you’d like to know the state of a modifier key outside of a key event, you can access them in the static ModifierKeys property of the Control class. For example, the following checks to see if the Control key is the only modifier to be pressed during a mouse click event:

void EllipseLabel_Click(object sender, EventArgs e) {

  if( Control.ModifierKeys == Keys.Control ) {

    MessageBox.Show("Ctrl+Click detected");

  }

}

Windows Message Handling
The paint event, the mouse and keyboard events and most of the other events that a custom control handles come from the underlying Windows operating system. At the Win32 level, the events start out life as windows messages. A windows message is most often generated by Windows because of some kind of hardware event, like the user pressed a key, moved the mouse or brought a window from the background to the foreground. The window that needs to react to the message gets the message queued in its message queue. That’s where WinForms steps in.
The Control base class is roughly equivalent to the concept of a window in the operating system. It’s the job of WinForms to take each message off of the Windows message queue and route it to the Control responsible for handling the message. The base Control class turns this message into an event, which it then fires by calling the appropriate method in the base class. For example, the WM_PAINT Windows message eventually turns into a call on the OnPaint method, which in turn fires the Paint even to all interested listeners.
However, WinForms doesn’t turn all Windows messages into events. For those cases, you can drop down to a lower level and handle the messages as they come into the Control by overriding the WndProc method:

protected override void WndProc(ref Message m) {

  // Process and/or update message

  ...

  // Let base class handle it if you don't

  base.WndProc(ref m);

}

As a somewhat esoteric example of handling Windows messages directly, the following is a rewrite of the code from Chapter 2: Forms to move the non-rectangular form around the screen:
protected override void WndProc(ref Message m) {

  // Let the base class have first crack

  base.WndProc(ref m);

  int WM_NCHITTEST = 0x84; // winuser.h

  if( m.Msg != WM_NCHITTEST ) return;

  // If the user clicked on the client area,

  // ask the OS to treat it as a click on the caption

  int HTCLIENT = 1;

  int HTCAPTION = 2;

  if( m.Result.ToInt32() == HTCLIENT )

    m.Result = (IntPtr)HTCAPTION;

}

This code handles the WM_NCHITTEST message, which is one of the few that WinForms doesn’t expose as an event. In this case, the code is calling to the Windows-provided handler for this message to see if the user is moving their mouse over the client area of the form. If they are, the code pretends that the entire client area is the caption so that when they click and drag on it, Windows will do the moving of the form for us.

There aren’t a whole lot of reasons to override the WndProc method and handle the Windows message directly, but it’s nice to know that it’s there in case you need it.
Scrolling Controls

While inheriting from Control directly gives you a bunch of functionality, you may find the need to create a control that scrolls. The logic involved in creating the scrollbar(s) and handling repainting correctly as the user scrolls across the drawing surface could certainly be accomplished with a custom control. Luckily the Framework has provided a class that will handle most of these chores for you.

To create a scrolling control, derive from ScrollableControl instead of Control:

class ScrollingEllipseLabel : ScrollableControl {...}
When implementing a scrolling control, the ClientRectangle represents the size of the control’s visible surface, but there could be more of the control isn’t currently visible because it’s scrolled out of range. To get to the entire area of the control, use the DisplayRectangle instead. The DisplayRectangle is a property of the ScrollableControl class that represents the virtual drawing area. The difference between the ClientRectangle and the DisplayRectangle can be seen in Figure 20.
[image: image18.png]
Figure 20: DisplayRectangle vs. ClientRectangle

An OnPaint method handling scrolling should look something like this:

protected override void OnPaint(PaintEventArgs pe) {

  Graphics g = pe.Graphics;

  using( Brush foreBrush = new SolidBrush(this.ForeColor) )

  using( Brush backBrush = new SolidBrush(this.BackColor) ) {

    g.FillEllipse(foreBrush, this.DisplayRectangle);

    StringFormat format = new StringFormat();

    format.Alignment = StringAlignment.Center;

    format.LineAlignment = StringAlignment.Center;

    g.DrawString(

      this.Text, this.Font, backBrush, this.DisplayRectangle, format);

  }

  base.OnPaint(pe);

}

The only difference between this OnPaint method and the custom control is the fact that we are painting to the DisplayRectangle instead of the client rectangle.

Setting the Scroll Dimension

Unlike the ClientRectangle, which is determined by the container of the control, the DisplayRectangle is determined by the control itself. The scrollable control gets to decide the minimum by setting the AutoScrollMinSize property from the ScrollableControl base class. For example, the following code calculates the size needed for the scrollable label based on the size of the Text property using the control’s font settings:

void ScrollingEllipseLabel_TextChanged(object sender, EventArgs e) {

  this.Invalidate();

  // Text changed -- calculate new DisplayRectangle

  SetScrollMinSize();

}

void ScrollingEllipseLabel_FontChanged(object sender, EventArgs e) {

  // Font changed -- calculate new DisplayRectangle

  SetScrollMinSize();

}

void SetScrollMinSize() {

  // Create a Graphics Object to measure with

  using( Graphics g = this.CreateGraphics() ) {

    // Determine the size of the text

    SizeF sizeF = g.MeasureString(this.Text, this.Font);

    Size size =

      new Size(

      (int)Math.Ceiling(sizeF.Width),

      (int)Math.Ceiling(sizeF.Height));

    // Set the minimum size to the text size

    this.AutoScrollMinSize = size;    

  }

}

The SetScrollMinSize helper measures the size that the text in the particular font will be and creates a Size structure. This Size structure is used to tell the control when to show the scrollbars by setting the AutoScrollMinSize property. If the DisplayRectangle is larger in either dimension than the ClientRectangle, scrollbars will happen.

There are a few other interesting properties of the ScrollableControl base class. The AutoScroll property (set to true by the Designer by default), will enable the DisplayRectangle to be a different size than the ClientRectangle. Otherwise, the DisplayRectangle will always be the same size as the ClientRectangle.
The AutoScrollPosition property allows for the position within the scrollable area of the control to be changed programmatically. The AutoScrollMargin is used to set a margin around scrollable controls that are also container controls. The DockPadding property is similar, but used for child controls that dock. Container controls could be controls like the GroupBox or the Panel, or they could be custom, like user controls, covered later in this chapter.
If you’d like to know when your scrollable control scrolls, you can handle the HScroll and VScroll events. Other than the scrolling capability, scrollable controls are just like any other control that derives from the Control base class.
Extending Existing Controls

If you’d like a control that’s similar to an existing control, but not exactly the same, you don’t want to start by deriving from Control or ScrollableControl and building everything up from scratch. Instead, you should derive from the existing control, whether it’s one of the standard controls provided by WinForms or one of your own controls.

For example, let’s assume that you want to create a FileTextBox control that’s just like the TextBox control, except it will indicate to the user whether the currently entered file exists or not. Figure 21 and Figure 22 show the FileTextBox control in use.

[image: image19.png]
Figure 21:  FileTextBox with a file that does not exist

[image: image20.png]
Figure 22:  FileTextBox with a file name that does exist
By putting this functionality into a reusable control, you can drop it on any form without making the form itself provide this functionality. By deriving the FileTextBox from the TextBox base control class, you can get most of the behavior you need without any effort, letting you focus on the interesting new functionality:

class FileTextBox : TextBox {

  protected override void OnTextChanged(EventArgs e) {

    // If the file does not exist, color the text red

    if( !File.Exists(this.Text) ) {

      this.ForeColor = Color.Red;

    }

    else { // Make it black

      this.ForeColor = Color.Black;

    }

    // Call the base class

    base.OnTextChanged(e);

  }

}

Notice that implementing the FileTextBox is merely a matter of deriving from the TextBox base class, which provides all of the editing capabilities that the user will expect, and overriding the OnTextChanged method (I could have also handled the TextChanged event). When the text changes, we use the System.IO.File class’s Exists method to check if the currently entered file exists in the file system or not and setting the foreground color of the control according. Often, new controls that have application-specific functionality can easily be created from as little code as this, since the bulk of the code is provided by the base control class.

User Controls

Deriving from an existing control is one way to reuse it, but the most popular form of reuse for a control is simple containment, as you’re used to doing when building custom forms using existing controls. A user control is a way to contain a set of other controls for reuse as a set, producing a kind of “sub-form.” For example, imagine that we wanted a control that composed our FileTextBox control with a “…” button for browsing. In use, it would look like Figure 23.

[image: image21.png]
Figure 23: A sample user control in action

It’s hard to tell from the picture, but as far as the form in Figure 23 is concerned, it’s containing only a single control (named FileBrowseTextBox). The control is a user control because it derives from the UserControl base class and contains two other controls, a FileTextBox control and a Button control.
To create custom user control, right-click on your project in the Solution Explorer and choose Add->Add User Control and press OK
. When you do, you’ll get the design surface for your user control to arrange with controls as shown in Figure 24.

[image: image22.png]
Figure 24: A new user control

Building a user control that brings the FileTextBox together with a browse button is a matter of dropping of each onto the form and arranging to taste. Also, to enable browsing, you’ll probably want to use an instance of the OpenFileDialog component, capturing all of that functionality into a single user control for reuse, as shown in Figure 25
[image: image23.png]
Figure 25: The FileBrowseTextBox user control in the Designer

All of the control arrangement that you’re already used to, like anchoring and docking, and all of the same techniques for setting properties or handling events, all work the same way in a user control as they do when building a custom form. After arranging of existing controls and components on the user control design surface, this leaves you to write a tiny hunk of code to handle the click on the browse button to make it all work:

void browseButton_Click(object sender, EventArgs e) {

  if( this.openFileDialog1.ShowDialog() == DialogResult.OK ) {

    fileTextBox1.Text = this.openFile.FileName;

  }

}

User controls allow you to build reusable controls using the same tools you use when building forms, but with the added advantage of being able to drop a user control onto anything that can contain controls, including container controls, forms and even other user controls.
Drag ‘n’ Drop

No matter what kind of controls you’re using or building, often you’d like to enable the user to drag data from one to another. This communication protocol, known as drag ‘n’ drop, has long been standardized and is fully supported in WinForms for both targets and sources.
Drop Target
Adding drag and drop to your application using involves two sides; the target and the source. First, you must have a control that supports having things dragged and dropped onto it. This kind of a control is known as the target. A target is designated by setting the AllowDrop property of the control to true.
Once this is done, the target control will want to subscribe for one or more of the drag ‘n’ drop events:

· DragEnter: Fired when the mouse enters the area of a control with a drag ‘n’ drop data. Used by the target to indicate whether it’s able to accept they data or not
· DragOver: Called as the user hovers the mouse over the target

· DragLeave: Called when mouse leaves the are of a control with the drag ‘n’ drop data
· DragDrop: Called when the user drops the data onto the target

All target controls need to implement the DragEnter event or they won’t be able to accept any dropped data. The DragEnter event comes along with an instance of the DragEventArgs class, which gives the target information about the data:

class DragEventArgs : EventArgs {

  // Properties

  public DragDropEffects AllowedEffect { get; }

  public IDataObject Data { get; }

  public DragDropEffects Effect { get; set; }

  public int KeyState { get; }

  public int X { get; }

  public int Y { get; }

}

A target control’s DragEnter event handler will need to check the Data property to see if it can be accepted when dropped. The object returned from the Data property implements IDataObject to make that determination possible:

interface IDataObject {

  // Methods

  public virtual

    object GetData(string format, bool autoConvert);

  public virtual object GetData(string  format);

  public virtual object GetData(Type format);

  public virtual void

    SetData(string format, bool autoConvert, object data);

  public virtual void SetData(string  format, object data);

  public virtual void SetData(Type format, object data);

  public virtual void SetData(object data);

  public virtual

    bool GetDataPresent(string format, bool autoConvert);

  public virtual bool GetDataPresent(string format);

  public virtual bool GetDataPresent(Type format);

  public virtual string[] GetFormats(bool autoConvert);

  public virtual string[] GetFormats();

}

The IDataObject interface is actually defined from its Component Object Model (COM) cousin, where drag ‘n’ drop was born. WinForms continues to work with the COM-based protocol so that managed and unmanaged applications can participate in drag ‘n’ drop operations between each other.

Further, the COM-based protocol itself is based on the Windows convention for how the Clipboard works. All data passed around using drag ‘n’ drop is represented in Clipboard formats. Some Clipboard formats are custom for your own application and some are well-known to allow Clipboard and drag ‘n’ drop operations between applications. The format strings used to specify the well-known formats are pre-defined as static fields of the DataFormats class:

class DataFormats {

  // Fields

  public static readonly string Bitmap;

  public static readonly string CommaSeparatedValue;

  public static readonly string Dib;

  public static readonly string Dif;

  public static readonly string EnhancedMetafile;

  public static readonly string FileDrop;

  public static readonly string Html;

  public static readonly string Locale;

  public static readonly string MetafilePict;

  public static readonly string OemText;

  public static readonly string Palette;

  public static readonly string PenData;

  public static readonly string Riff;

  public static readonly string Rtf;

  public static readonly string Serializable;

  public static readonly string StringFormat;

  public static readonly string SymbolicLink;

  public static readonly string Text;

  public static readonly string Tiff;

  public static readonly string UnicodeText;

  public static readonly string WaveAudio;

  // Methods

  public static DataFormats.Format GetFormat(string format);

  public static DataFormats.Format GetFormat(int id);

}

In addition to support for well-known data formats, .NET provides a conversion from some .NET types, like String, to a corresponding format string, like DataFormats.Text. Using a format string and the GetDataPresent method of the IDataObject, the target can determine if the type of data being dragged is acceptable for a drop:

void textBox3_DragEnter(object sender, DragEventArgs e) {

  // Could check against DataForms.Text as well

  if( e.Data.GetDataPresent(typeof(string)) ) {

    e.Effect = DragDropEffects.Copy;

  }

  else {

    e.Effect = DragDropEffects.None;

  }

}

GetDataPresent will check the format of the data to see if it matches the Clipboard format (or a .NET type converted to a Clipboard format). If you need to find out if the data is in a convertible format, you can call the GetFormats() function that returns an array of formats. Calling any of the IDataObject methods with the autoConvert parameter set to false will disable anything but a direct match of data types.

If the data is acceptable, the DragEnter event handler should set the Effect property of the DragEffectArgs object to one or more flags indicating what the control is willing to do with the data if it’s dropped, as determined by the flags in the DragDropEffects enumeration:

enum DragDropEffects {

  Copy, // Take a copy of the data

  Move, // Take ownership of the data

  Link, // Link to the data

  Scroll, // Scrolling is happening in the target

  All, // All of the above

  None, // Reject the data

}

If a drop is allowed and it happens while over the target, the target control will receive the DragDrop event:

void textBox3_DragDrop(object sender, DragEventArgs e) {
  textBox3.Text = (string)e.Data.GetData(typeof(string));

}
When implementing the DragDrop handler, the Effect property of the DragEventArgs will be the effect that the source and target agreed on, should multiple effects be allowed. Retrieving the data is a matter of calling GetData, using either a DataFormat format string or a .NET Type object, casting the result.

Drop Targets and COM

Once you enable a control as a target, you open yourself up to the possibility of the cryptic message shown in Figure 26.

[image: image24.png]
Figure 26: Cryptic drag ‘n’ drop error message
Because drag ‘n’ drop is a feature provided using COM, COM needs to be initialized on the UI thread. While .NET is smart enough to lazily initialize COM on the running thread as needed, for reasons of efficiency it will pick the UI-hostile Multi-Threaded Apartment (MTA) for the thread to join unless told to do otherwise. Unfortunately, for drag ‘n’ drop, the UI thread needs to join the Single-Threaded Apartment (STA). To ensure that’s the case, always double check that the Main function on all of your WinForms applications is marked with the STAThreadAttribute:

[STAThread
]

static void Main() {

  Application.Run(new Form1());

}

Any VS.NET-generated code will contain this attribute on the Main function by default (even Console applications), but just in case it somehow goes missing, this is the first thing to check when you see the message box from Figure 26.

Drag Source

With the target implemented, what’s left is initiating a drag ‘n’ drop operation, which is accomplished using the DoDragDrop method of the Control class. The place that DoDragDrop happens is almost always in the handler for a MouseDown event:

void button3_MouseDown(object sender, MouseEventArgs e) {

  // Start a drag 'n' operation

  DoDragDrop(button3.Text, DragDropEffects.Copy);

}

The DoDragDrop method’s first parameter is the data, which can be any object. The second parameter is a combination of the drag drop effects that the source supports. As an example, Figure 27 shows the button initiating the drag ‘n’ drop.
[image: image25.png]
Figure 27: A drag ‘n’ drop operation showing the None effect
As the drag ‘n’ drop operation progresses, the DoDragDrop operation tracks the mouse over controls, looking to see if they are potential drop targets (as set with the AllowDrop property) and firing the DragEnter event to see if potential targets can accept the data. Depending on whether the target can accept the data or not, DoDragDrop sets the cursor based on the current effect indicated by the target to indicate to the user what would happen if they were to drop at any point. Notice that in Figure 27 that the button itself is not a drop target, so the cursor indicates that a drop on the button would have no effect.

On the other hand, once the data is dragged over a text box enabled to accept string data, the DragEnter event is fired and the control indicates the effect that it will support, causing the cursor to be updated appropriately, as shown in Figure 28.

[image: image26.png]
Figure 28: Drop target indicates the Copy effect
Dropping causes the DragDrop event to be fired on the target, causing the target to accept the data, as shown in Figure 29.

[image: image27.png]
Figure 29: Completed drag ‘n’ drop Copy operation

Once the drag and drop is completed, the DoDragDrop method will return with the effect that was performed. If the effect was a Move, then the source knows to remove its copy of the data.

Supporting Multiple Effects

If you want to support more than one effect, like Copy and Move, you can check the KeyState of the DragEventArgs structure. The KeyState property is a set of flags that determines which keys are being pressed. By Windows convention, the lack of modifier keys indicates a Move, the Ctrl modifier indicates a Copy and the Ctrl+Shift modifiers indicate a Link (which you may or may not support in your application).

Unfortunately, the KeyState property is an integer and WinForms provides no data type for checking the flags, so you’ll need your own like this KeyState enumeration
:
// KeyState Values (not available in WinForms)

[FlagsAttribute] enum KeyState {

  LeftMouse = 1,

  RightMouse = 2,

  ShiftKey = 4,

  CtrlKey = 8,

  MiddleMouse = 16,

  AltKey = 32,

}

Because the user may change the keys they’re pressing at any time to get the effect they’re looking for, you will want to notify the drag operation of what operation they are trying to do while the mouse is hovering. To do this you will want to do this check on the DragEnter and DragOver events:

void textBox3_DragEnter(object sender, DragEventArgs e) {

  SetDropEffect(e);

}

void textBox3_DragOver(object sender, DragEventArgs e) {

  SetDropEffect(e);

}

void SetDropEffect(DragEventArgs  e) {

  KeyState keyState = (KeyState)e.KeyState;

  // If the data is a string, we can handle it

  if( e.Data.GetDataPresent(typeof(string)) ) {

    // If only ctrl is pressed, copy it

    if( (keyState & KeyState.CtrlKey) == KeyState.CtrlKey ) {

      e.Effect = DragDropEffects.Copy;

    }

    else { // Else, move it

      e.Effect = DragDropEffects.Move;

    }

  }

  // We don't like the data, so do not allow anything 

  else {

    e.Effect = DragDropEffects.None;

  }

}

The SetDropEffect method makes sure that the data is a string since that is all we are expecting. If it finds a string, it tests to see if the Ctrl key is pressed. If so, it specifies that they are copying, otherwise it specifies that it will do a move. Figure 30 shows what the drag operation now looks like over the text box without the Ctrl key pressed, indicating a move effect.

[image: image28.png]
Figure 30: Dragging without Ctrl, causing a Move

Figure 31 shows the same operation with the Ctrl key pressed, indicating a copy effect.

[image: image29.png]
Figure 31:  Dragging with Ctrl, causing a Copy
In our sample, when the user drops the data with no modifiers, indicating a move, the text will be removed from the button when it drops the text to the text box as seen in Figure 32.

[image: image30.png]
Figure 32:  After a drag ‘n’ drop Move operation
Handling multiple effects in the drag source requires specifying which effects are allowed and checked the resulting effect after the DoDragDrop method returns:
void button3_MouseDown(object sender, MouseEventArgs e) {

  DragDropEffects effect =

    DoDragDrop(

      button3.Text, 

      DragDropEffects.Copy | DragDropEffects.Move);

  // If the effect was move, remove the text of the button

  // If the effect was a copy, we don’t have anything to do

  if( effect == DragDropEffects.Move ) {

    button3.Text = "";

  }

}

Drag ‘n’ drop is a great way to allow your more mouse-oriented users to directly manipulate the data that your application presents for them without an undo development burden on you.
Where Are We?

Controls are a way to repackage hunks of user interaction and behavior for the user. They can also provide a great number of niceties to make them more approachable for the developer, which is what the next chapter is all about for both non-GUI components and GUI controls.
� Technically, both the MenuBar and the ContextMenu classes aren’t controls because they don’t derive from the Control base class, but they fit so nicely into this category, I didn’t have the heart to remove them. The details of these two components can be found in Chapter 2: Forms.

� Resources are covered in detail in Chapter 11: Resources.

� Be careful when using the Designer with custom controls. It will add an InitializeComponent method if there isn’t already one in the class, but it won’t add a call from your control’s constructor to InitializeComponent, so you need to do that manually.

� You can return a property to its “default” value in the Property Browser by right-clicking on the property name and choosing Reset.

� For an introduction to delegates and events, see Appendix B: Delegates & Events.

� If you’d like to start a whole new project to hold user controls, you can do so with the Windows Controls Library project template in the New Project dialog.

� STAThread is a C# shortcut for STAThreadAttribute.

� The FlagsAttribute makes outputting instances of the KeyState enumeration show up in a more friendly manner, like “LeftMouse, CtrlKey” instead of “9”.




38

