
49ITconsultantjanuary 2002

Column inches SOFTWARE SOLUTIONS

Over the years, I’ve had a
number of consulting
clients, some of whom

have asked me to produce
code to get them started in a
kind of a wizard-by-the-hour
fashion. The following three
are a representative sample of
the kinds of code I was asked
to produce. Each case was
very different, but all of them
have a common theme: one
client asked me to port their
MFC COM Control to ATL; one
client asked me to build a
vertical slice of their n-tier
system; and one client asked
me to implement a persistent
object model to represent a

‘message’ in their system that would be passed from point
to point as work was done.

You may have a hard time finding the similarity between
these three coding projects, so I’ll tell you: each was
already defined by a set of metadata that, when combined
with the client’s implementation rules, were sufficient to
predetermine most or even all of the code. What my clients
were asking me to do in each case was to produce the
correct code from the metadata. The object model and the
MFC COM Control were both described in COM IDL
(Interface Definition Language). The n-tier system was to
be a direct mapping of their database, which was
described in SQL Schema. My clients wanted my help
manually translating that metadata into representative
code, which I did.

In the case of the MFC COM Control, I ignored the
metadata completely and went right for the C++ source
code, manually translating MFC constructs to ATL
constructs. In the case of the n-tier system, I built a
vertical slice based on the design we had worked out, only
referring to the schema to determine the columns in the
tables I was supposed to be typing into my code. In neither
case was my work reusable for that client or any other
client. If I had wanted to provide an MFC to ATL translation
service to another client, I would be back to manually
translating the code. And the client that got my vertical

slice had to manually replicate it across tens of tables
using the standard code reuse methodology formally know
as ‘copy and paste’.

In neither case did I feel like I had done all that I could
do for the client, because I had not left them with a good
technique to carry on their remaining work in my absence;
nor had I built up a tool or repeatable service that I could
offer to other clients. So, for my next client, I tried
something different.

The client that wanted me to implement an object model
knew exactly what the object was supposed to look like,
because they’d described in it COM IDL. In this case, I built
a Visual Basic program that would programmatically
navigate the compiled version of the IDL, a COM
TypeLibrary, and generate the appropriate code based on
their specific implementation requirements, eg
persistence, exposing properties, exposing COM
collections etc.

The beauty of this technique was that I only had to write
the code for each specific feature once and it would be
automatically replicated in every case. When I found bugs,
I fixed them in the VB program and regenerated the code.
Using this technique, I was literally able to generate a 98%
implementation of their entire object model in 24 hours, in
comparison to a member of their own staff who’d be
working on it for eight months. Granted, their staff hadn’t
written books on COM like I had, which was why they came
to me in the first place, but a 1000% gain in coding
efficiency is still pretty impressive. The client certainly
thought so.

The real hero, of course, was code generation. Reuse
techniques like classes, components and templates are
great, but they don’t solve the whole problem. There is still
a great deal of code to be written to take advantage of
these reuse techniques. Think about the last project you
were on. Was there some SQL Schema or XML Schema or
COM IDL file that you were manually translating into an
implementation? Was there enough grunt work involved
that you down-shifted into ‘copy and paste’ mode? If so,
you’re already using code generation, but in its most
primitive form.

I advise stepping up to a more general-purpose
technique and some real code generation tools. My
favourite code generation technique involves reusing
Microsoft Active Service Pages (ASP) syntax, with full
debugging support, pluggable scripting languages and
access to any COM object in the known universe and,
instead of generating HTML, generating C++ or VB or
Java or XML or whatever it is you’re after. Another popular
choice is eXtensible Stylesheet Language
Transformations (XSLT). Whichever you decide, you owe it
to yourself to give code generation a try. Your clients will
thank you for it. Mine did.

Chris Sells is a long-time consultant, author and
speaker on a variety of Microsoft technologies.

He can be reached at http://www.sellsbrothers.com

The reusable
generation

by Chris Sells

ITc

ITC_01_Column inch 2/8/02 3:49 PM Page 49

