Attila Command UI

Joe O'Leary

1999-OCT-31

Attila Command UI updating is designed to mimic that of MFC as closely as possible while minimizing the impact on your applications.

Attila Command UI utilizes the following new messages

· WM_CMDUI - delivers command UI notifications (the equivalent of an MFC WM_COMMAND with CN_COMMAND_UI notification code)

· WM_IDLECMDUI - used to tell windows to initiate command UI processing. Usually, this will cause them to send WM_CMDUI messages.

· WM_SBGETPANECMDID - for command UI status bars. given a pane Id, returns the command identifier associated with it

· WM_SBGETPANESTYLE - for command UI status bars. Given a pane Id, returns its style

· WM_SBSETPANESTYLE - for command UI status bars. Sets the style of a pane.

Attila Command UI adds the following classes…

CCmdUI - base interface for command UI updating. Just like MFC's

CMenuCmdUI - derives from CCmdUI. Used for updating menu items

CStatusBarCtrlCmdUI - derives from CCmdUI. Used for updating status bar panes

CToolBarCtrlCmdUI - derives from CCmdUI - Used for updating toolbar buttons

CWindowCmdUI - derives from CCmdUI - Used for updating windows (when the other classes do not apply).

…and the following templates

CCmdUIStatusBarT - This template is designed to mimic MFC's CStatusBar class.. It allows you to assign command IDs to each pane and have them updated via the command UI mechanism. When you instantiate your status bar, wrap it in this template.

CCmdUIDlgT - This template allows you to do command UI in your dialogs. When you instantiate your dialog, wrap it in this template.

CIdleUIWindowT - This template provides a simple way to make your control bar ready for idle-time command UI. Currently only used for toolbars. When you instantiate your toolbar, wrap it in this template. There is already a default specialization of this template, CIdleUIToolBar, deriving from a vanilla Attila CToolBar

Known Limitations:

MFC Command UI routing depends upon several backdoor mechanisms that Attila command UI cannot use. These include the thread-local storage of CWinThread, window handle maps, and the CFrameWnd::IsFrameWnd() function.. Attila avoids such a monolithic hierarchy and so cannot rely on any of these.

Routing

Command UI routing should generally follow the same path as WM_COMMAND routing. If you do not route WM_CMDUI messages precisely the same way as you rount WM_COMMAND messages, you probably will not get the results you want.

Menu Items

Menu Command UI depends upon a WM_INITMENUPOPUP handler. The base Attila CFrameWindowImpl class template has the appropriate handler. If you do not use CFrameWindowImpl, you will need to add a WM_INITPOPUPMENU handler much like CFrameWindowsImpl's to the appropriate class.

IsFrameWnd

MFC Command UI processing frequently searches up through the hierarchy of windows by retrieving CWnd objects using handle maps. The MFC code keeps going up until it finds a CWnd that returns true from CWnd::IsFrameWnd. This is how it knows that it has hooked back into the normal WM_COMMAND pathways and that its command UI notifications will reach you handlers.

Since Attila has no such backdoor, it uses a far simpler method. It declares a global function template named IsAttilaFrameWnd. This function simply returns true if the given window has the styles WS_EX_APPWINDOW and WS_EX_MDICHILD. This method is a bit simplistic however and will almost certainly not suit everyone's needs. If you want something better, you can explicitly instantiate the template for CWindow and replace my code with whatever suits you. For example, you might create a custom window message, WM_ISFRAMEWND and make your windows handle it. Then you could just do something like this

 namespace Attila

 {

 template<>

 inline bool IsAttilaFrameWindow<CWindow>(CWindow& wnd)

 {

 FALSE != return wnd.SendMessage(WM_ISFRAMEWND, 0, 0);

 }

 };

As long as you remember to put your function in the Attila namespace, it Attila Command UI handlers will call your function instead of the default one.

Modal Dialogs

MFC goes to great pains to put command UI handling together with modal dialogs. They take over the entire modal loop from windows; When you create "modal" MFC dialog, under the covers MFC is actually creating a modeless dialog and simulating modality. It's a LOT of code that uses a lot of MFC voodoo.

Rather than reproduce all of this code, Attila takes a simpler approach. If you want command UI in a modal dialog, you must add a WM_ENTERIDLE handler in the dialog owner's message map. This WM_ENTERIDLE handler must send a WM_IDLECMDUI message right back to the dialog. You can find an example of this in the SingleInst sample main frame class. (Perhaps I should have placed such a handler in a the base Attila frame class, CFrameWindowImpl but command UI in dialogs seemed an uncommon enough thing that I left it out.)

A dialog's owner window is usually the main application window, not the dialog's parent window.

One side effect of this is that you cannot have command UI in a modal dialog if that dialog is the main window of a dialog based app. In such a case, I would recommend creating the dialog as modeless. Since it is the main app window, this should not be a problem.

Message Pump

With the exception of menu item handling, all command UI processing begins with idle time processing. The CWinThread message pump handler is very efficient in this manner. Unfortunately, it is also relatively large an difficult to integrate. I considered several alternative approaches to initiating idle-time processing, (timers, Attila message translators) but none worked as reliably as the good old MFC way.

I believe that there must be a more efficient way, however. The goal was to have a message loop like this:

MSG msg;

while(PumpMessage(&msg, 0, 0, 0))

{

 if(!AttilaCommandUI(&msg) && !CMsgTranslator::Translate(&msg))

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

}

however I have been unable make this work reliably. For now I have completely integrated a scaled down version of the MFC message pump into the SingleInst sample. I have also included two alternative methods -- a global function and a message pumping class -- in the AttilaMsgPump.h header. I invite ideas on how to improve this aspect of command UI. It is not pretty.

