
XSLT, .NET, and
Web Services

Chris Dix

Dart Communications

Introductions

Chris Dix
Lead Developer for PowerTCP
Components at Dart Communications

http://www.dart.com/

XML Schema Complete Reference
(Addison-Wesley, 2002)

Professional XML Web Services (Wrox,
2000)

XSLT

eXtensible Stylesheet Language:
Transformations

XML syntax for transforming XML
documents

XSLT Basics

Templates
Basic unit of execution for a
transformation

Can be associated with an XPath pattern
or can be named and executed explicitly

<xsl:template >

<xsl:apply-templates >

<xsl:call-template >

XSLT Basics

Functional Programming

XPath Expressions

Variables

Conditional Logic

XSLT and Web Services

XSLT is a great tool for
manipulating XML

Don Box once described SOAP as
“XSLT with a longer wire”

The execution of a stylesheet
in response to a SOAP request
can generate a SOAP response

XSLT and Web Services

When using XSLT, there is no
“language barrier”

XML content of the payload is
directly accessible via XPath
expressions

There is a good and bad side to
this

Is this a good idea?

It boils down to language-
preference
There are a lot of ways this
could be done
.NET Remoting Extension?

There are a lot of improvements
that could be made that will
not discussed today

XSLT As Endpoint

What is missing?
XSLT can’t listen for an HTTP
request

Transport protocol support must be
separate

XSLT is “typeless” (ok, it has 5
types)

Type information must be added
somehow

Example: Simple XSLT Web
Service

This needs:
A stylesheet to validate the SOAP
message and perform the
transformation of the request
payload into the response

Code to trigger the transformation

Example Stylesheet Basics

SOAP Envelope processing
Request

Response

Payload manipulation
Request

Response

Example Listener Basics

.NET Code to Handle HTTP Request

.NET Code to Trigger Transformation

This code could be written in a lot
of different ways; I chose .NET, but
the principle is widely applicable

IHttpHandler
using System;
using System.Web;
using System.Xml;
using System.Xml.Xsl;
using System.Xml.XPath;

namespace kafka
{

public class SoapHttpRequestHandler : IHttpHandler
{

public SoapHttpRequestHandler() {}

public void ProcessRequest(HttpContext context)
{…}

public bool IsReusable
{

get { return false; }
}

}
}

.NET and XSLT

System.Xml
System.Xml.Xsl

These contain the classes for
using XSLT in .NET
XslTransform

XmlTextWriter

XPathDocument

.NET Transformations of an
HTTP Request
XslTransform xsltExec = new XslTransform();
xsltExec.Load(context.Request.MapPath(“code.xslt"));

XmlTextWriter refResponse = new XmlTextWriter(
context.Response.OutputStream,
new System.Text.UTF8Encoding());

refResponse.Formatting = Formatting.Indented;

// Process message
XPathDocument docRequest = new XPathDocument(

context.Request.InputStream);
context.Response.ContentType = "text/xml";
xsltExec.Transform(xpathdocument, null, refResponse);

Starting From There

A combination of stylesheets
with minimal “engine” code can
function as a framework for
service development

The simple Web Service
stylesheet provides a
foundation for such a framework

Building the Framework

Goal:
Make the developer unaware of the
nature of Web Services

In XSLT, templates are the unit
of work, so they map to
operations of a Web Service

XSLT Templates as
Operations

It would be difficult to match
XSLT templates to Web Service
operations unless we use named
templates

Named templates are, by
definition, named, and they
have parameter lists as well

Named Template for
echoString

<xsl:template name="echoString" >
<xsl:param name="inputString" />

<xsl:value-of select="$inputString"/>
</xsl:template>

This is an XSLT named template that only
echoes the value passed into the
inputString parameter
The goal is to expose this as a Web
Service operation

Extensibility

Open nature of XSLT allows for attributes
to be safely added to XSLT elements from
foreign namespaces; processors are to
ignore them if they don’t recognize them
“Foreign Namespace Attributes” allow
developers to extend XSLT with additional
metadata without breaking the language
Comparable to .NET Attributes that tag
object methods with additional metadata
Kafka Namespace URI

http://www.thoughtpost.com/2002/kafka

Before Extensibility

<xsl:template name="echoString" >

<xsl:param name="inputString" />

<xsl:value-of select="$inputString"/>

</xsl:template>

As it exists here, this template does not
give us enough information to expose it as
a Web Service in a friendly manner

After Extensibility

<xsl:template name="echoString"
k:type="xsd:string">

<xsl:param name="inputString"
k:type="xsd:string"/>

<xsl:value-of select="$inputString"/>

</xsl:template>

Metadata is provided for the parameters
and return type of this operation, legal
to XSLT and enough to generate WSDL

Example Attributes

type

operation
Equivalent to .NET WebMethod() attribute

targetNamespace

schemaNamespace

documentation

array

XSLT Transformed

It is not enough to just xsl:include
support for the framework

Because XSLT is XML, it can be
transformed using a stylesheet

In order to make the XSLT function
as a Web Service, it first must be
transformed using the framework

XSLT Transformed

“Source” XSLT is transformed
Named templates tagged as
operations are identified

The framework generates a
stylesheet that includes the
original, plus SOAP message
processing and an xsl:choose to
trigger the appropriate template
based on the payload

Transport Protocols

.NET provides IHttpHandler
interface, a better ISAPI

“Listener” code written as an
IHttpHandler implementation provides
just enough code to trigger the
transformation in response to an
HTTP request

Additional transports could be
supported in other ways

Listener Logic

An HTTP POST (or GET) can represent
the request to the Web Service, but
many toolkits support additional
requests

Description via WSDL
?wsdl query string on a GET can provide WSDL
for the service

Documentation
Browse to Web Service, get smart
documentation

WSDL As Output

XSLT needs additional type
information in order to generate
useful WSDL

Foreign namespace attributes provide
enough type information to generate
WSDL

Listener maps ?wsdl requests to a
WSDL-generating transformation

Example

XSLT Endpoint

.NET HttpHandler for Listener

Supports WSDL Generation

What Is Difficult?

Focus on named templates

XSLT support for Section 5 encoding
is difficult; it does better with
document-style

Multi-ref accessors
This is the kind of detail that a good
framework would hide, so it involves
expanding the payload references

Designing for SOAP Header support

Summary

XSLT can function as the code
behind a Web Service
.NET makes it easy to write the
non-XSLT code needed to support
this framework
The extensible nature of XSLT
allows this type of framework
to be possible

